*

DS 7z ogpy
@ NAVAL POSTGRADUATE SCHOOL

Monterey, California

AD-A218 778

s ELECTE
MARO 8 1980
® ~B

THESIS

THE DEVELOPMENT
OF A
RAPID PROTOTYPING ENVIRONMENT

by

R

Laurt J. White

December 1989

Thesis Advisor: Luqi

Approved for public releuse; distribution is unlimited.

90 03 o7 O‘%@

Unclassified

Y CLASHRA WIS FA
REPORT DOCUMENTATION PAGE
1a. ACPOAT STCURITY CLASTITICATION 1y RESTRCIIVE MARNINGS
UNCLASSXFIED
20, JECURMLY CLASSIFICATION AUTHORITY 3 DISTRIBULION S AVAILABILITY OF REPORS

6. DECLASIHICATION 1 DOWNGARADING SCHLDULE

%, PUATORMING ORGANIZATION RUFORT NUMBEA(S) 3 MONITGRING ORGAMIATION RLFONF NUMBUALS]
%a. NAM OF PUAFORMING ORGANIZATION | #5 OFFICL SYMEOL | 73 NAME OF MONITORING ORGAMZATION
Naval Postgraduate School (1t gaplicable) Naval Pustgraduate School
%. ADORESS (Gty, State, 2nd £ Code) 76 ADORESS (City, State, and 21 Code)
Monterey, CA 93943-5000 Monterey, €A 9WW&3-5000
%5, NAMC OF FUNDING / SPONSORING b OFFICE SYMBOL | 9 PAUCUAEMINT INSTRUMENT IDENTIFICATION HUMBER
ORGANUZATION (if applicable) ’
8¢. ADORESS (City, State, and 2P Codde) 10 SOURCE OF FUNDING NUMBERS .
PROGRAM PROJECT TASK WORK UMT
ELEMENT NGO | NO NO ACCESSION NO.

11 NILE pncivde Security Classifcation)

THE DEVELOPMENT UF A RAPID PROTOTYPING ENVIRONMENT (UNCLASSIFIED)
12. PERSONAL AUTHOR(S)

White, Laura J.

13a, TYPE OF REPORT 13b, TIME COVERED 14 DA
Master's Thesis tAOM 10 1

16, SUPPLEMENTARY NOTATION
The views expressed In this thesis are those of the author and do not reflect the official
policy or position of che Department of Delense or the U.S. Government

TE OF REPORY (Year, Month, Day) 115 P. COUNT
Y89 December lr y Qﬂﬁ

17, COSATI CODES 18 SUBJECT TERMS (Continue on reverse If necestary andd Kdentify by block number)
FIELO GROUP SUB.GROUP Rapid Prototyping, PSDL, CAPS, Graphic Editor, Syntax
Directed Editor, Translator, Statiec Scheduler, Software
Database, Regl-Time Software, Embedded Systems

19 ANSTRACT (Continue on reverse il necessary and identify by block number)

Currently the development and maintenance of DOD embedded software systems with hard real-
time constraints is a very complex, time-consuming and costly task. This situation can be
improved by the use of adequate development methods and powerful support toels. This thesis
explores the development and intagration of rapid prototyping tools for the Computer Alded
Prototyping System (CAPS). CAPS supports the design and evolution of large, relisbhle embedded
softvare systems while significantly reducing their associated development and maintenance
costs,

CAPS utilizes the Prototype System Description Language (PSDL) and an inctegrated set of
construction and analysis tools. The integration of these tools utilizes previous werk on
their design, with partial implementations and feasibility studies-for some of the tools. We
ave defined and implemented a user interface while testing previous tools, refining the
esigns of the tools and either refining the implementations or generating the initial imple-
enga;ions. The user interface provides systematic access to the tools of the environment

20, DISTRIQUTION/ AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
X UncLAsSIFEOUNUMITED T SAME AS BT [DTIC USERS Unclassified
22a. NAME OF REGPONSIBLE INDIVIDUAL 22b VELEPHONE (Incfude Area Code) | «2¢ OFFICE SYMBOL
Prof Luqi (408) 646-2735 52Lq
DD FORM 1473, sa MAR 83 APR edit:on may be used until exhausted

SECURITY CLASSIFCATION OF THIS PAGE
W US, Gore Ament Printing Otfice: 1000-0060-34,

Al other editions are obsolete

. i Unclassified

Unclassified
SREVMTY CLANPICATION OF Tie PAGE

19. ABSTRACT Continued:

to support the underlyving vapid prototyping methodology. Integration issues include
asystem configuration, incegration testing, design modificazions, implementations, and
avolution of previously developed tocls within this rapid prototyping environment.

Acgession Yor
WTIS GRAKI a
DTIC TAB a

Unannounced 18]
Justifiontion

By
Distrlbpg}en/
Availability Codes
Avall and/or
Dist Spacial

¥ ~

UAL
P,

Unclassified
ii SECURITY CLASSIFICATION OF THIS PAGE

“w

Author:

Approved by:

Appraved for public release; distribution is unlimited.

‘The Development
of n
Rapid Prototyping Environment

by

Laura J. White
Licutenant, United States Navy
B.S., University of New Mexico, 1984

Submitted in partind fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
Deceinber 1989

??acz (dIE),. Z«;}taﬁ‘

Ladta J. White

’

- 9A

Luqi, &thsis Advisor

K\ /ﬁ»\ %\/((

we{is&md Reader

Robert B. McGhee, Chairman
Department of Computer Science

ABSTRACT

(
t.‘umrmly the development and maintenarcs of DOD embedded software systems
with hand real-time constraints is a very complex, time-consuming ami costly task. This
situation can be improved by the use of adequate development methods and powerful
support tools. This thesis explores the development and integration of rapid prototyping
tools for the Computer Aided Prototyping System (CAPS). CAPS supports the design

and evolution of large, reliable embedded software systems while significantly reducing

their associated development and maintenam. 2 ¢osts.

CAPS utilizes the Prototype System Description Language (PSDL) and an integrated
set of construction and ans'vsis tools. The integration of these tools utilizes previous
work en their design, with parial implementations and feasibility studies for some of the
tools. We have defined and implemented a user interface while testing previous tools,
refining the desigus of the tools and either refining the implementations or generating the
initial implementations. The user interface provities systematic access to the tools of the
environment to support the underlying rapid prototyping methodology. Integration issues
include system configuration, integration testing, design modifications, implementations,

and evolution of previously developed tools within this repid prototyping environment.

il

THESIS DISCLAIMER

Ada is a registered trademark of the United States Govemment, Ada Joint Program

Office.

I.

II.

IXX.

Iv.

vIl

TABLE OF CONTENTS

Imlont'mIQN 28 8B BB T LSRN RO AP AN E LSNPS NS EPETEESEEGEY
A, SOFIWARE DEVELOPMENT .. .uccennsronccsssnnsovscacasasonnnese
Bn M?XO !ngmr’x“a ER DS RSP IE I EEEE PSSRSO EINOECEOETERIESEESES
BACKG’:QUND P S T BN SN LT TSN I DS E ST S I EV IO ERNRS NN OPETOEOEESODN
A. THE PKOTOTYPING SYSTEM DESCAIPTION LANGUAGE (PSDL) ...c.s.
B. THE COMPUTER AIDED PROTOTYPING SYSTEM (CAPS) ...vcevnccean
C. PSDL PEOTOTYPES XN CAPS ,iovuecnressnssorsvccnnsssssnnnsas
DESIGR ISSUES FOR THE DEVELOPMENT OF CAPS ...ovvvvssensonnaans
A. CARS SYSTEM CONFIGURATION ...ccicnsrassssnesenanscsnsenanes
B. METHORGLOGY FOR INTEGRATION ..ovvvrecrsssnsassnasnsssnsvses
€. PORTABILITY AND SYSTEM DEPENDENCIES ...ovvesccssovssccscns
THE USER XNTEAFACE ..cciattessvesstessonsvavacsasvsssanscsssssnns
A. DPREVIOUS DESYGR o iviceoresnrnncesssasasvsosrnsssssnaossnssns
B, PREVICUS IMPLEMENTATION ..cvvevosacacsvonsncacsnnsnansnsnosne
€, MODITICATIONS TO THE DESBIGN ...vcercacnsnssscnstnesvsnssee

1. User Interface Responaibilitiesccoccenvivennncnene

2. Methodology For User INtexactioncieeeceesssssssss

3. MHenu Functions ..veeresranssvncsresosnsssnsisescssssnces

4., View CONslateancy t.csveceervenscccssoscssssssonnsssannas
D. IMPLEMENTATION ...cescnvsastsnonsasoncsssnanscasacnnssoassons
T"; Gu’"xc zoxmn LU BE R BN B B B B R B B B BN NN BE B RE B N BE B RN RY RE RN B BE R BN BN BE BUBN B NN BN BN WO)
A. PREVIOUS DESIGN s esvsevcenssessvscsssssssosesssosnssrsases
B. PREVIOUS IMPLEMENTATION ,.icacvasrvnsocscossnvrcssnassnsns
CO INT:G”TION LR B I NR B AN BN N B R R Y N B N I N R RN N RY RN R RN RN RN N R N Y N Y NN NN RN N RN S N N N R Y
D. INTEGRATION TESTING ..ccuvetestssnsvrsvsncncassnssocsnscsannes
E. MODIFICATIONS TO THE DESIGN AND THE IMPLEMENTATION ...cc0.
THE SYNTAX DIRECTED EDXITO® ..cvecescrnsosesnnnsnnnsnssasssnnee
A, WGUAGI-WED BOI‘I’OR GBNBMTOM S sErserseNsaNsI RO EDS
B. THE CORNELL SYNTHESIZER GENERATOR ...cccccecasessconssane
C. PREVIOUS DESIGN AND IMPLEMENTATION ..ciccvevvoescecsnncons
D. DEVELCPMENT OF THE PSDL EDITOR ..vcevevecvsconcaocnsnssnnss

1. Abstract Syntax Declarations ,.....cceveceetcnsasscnse

2., Unparsing Declarationscocevseencerscrcassssonnnas

3. Lexeme Declaxatlion®icceveecescerensnisesssascnnses

4. Attribute DeClaration®ccisscasnnccrcessssavesenes

5. Concrete Xnput DIClarationscceevevvececnoncnss

6. Tempiate Transformationsdcececeecccosssansassssens
E. DESIGN ISSUES OF THE COMPLETE PSDL ZDITORcocecsennncs
F. INTEGRATION ..cotcetecenstoarsassosonssosososssasansscssonsss
G. USING THE PSDL EDITOR .:seevroesonsnossccssssensnnssssscsasss
H. FUTURE WORK ., ..ccvevecensareoonrsscsonsnseassnsnsscasvsssnsvsnsse

vi

-~ & P

1

19
19
21
a3
25
2%
23
20
29
29
30
32
h 1]
36
36
3%
40
42
4«
87
57
L1
60
60
64
67
n
72
73
74
%
80
o1
93

vxx. T.’: sor“&“ DATA”S‘ s!srm LI L B2 IR L B BN BE IR BESK BN B SR B BN N AN L BE BN B BU K SR NN

A‘
B.
C.
D.

Rzus“uxhxrr B E SOOI PNTEEEETINEEITSESESONENOIEEOESIOPEOIOLIOITOS
azwxlmns (LR R NN N NN N NN N NN NN NE RN N ENRENNYYN]
SURVEY OF DATABASKE MANAGEMENT TECHMOLOGIBS ,....ceceevesne
rm“z xn‘cu’xw LR R A RN N NN N NN N NN NN N NN]

vxxx. T"‘ Tmsumk LI SR B B B B IR BEIE BN L IR B B S IR AL DU N BE AN IR AE I R IR BN BE SR BN IR N BX BN IR 3N 3N 3N A0 NN B B W

A
8.
c'
D.

’l;vxwa o‘sx“ T 090 ES TS CLLNNTS PP EIIEEEEREIOELSTOEIOESOEISS
PREVIOUS IMPLEMENTATION ..ccvcvasacescsssssnsrsnctvsscssacas
moxrxc‘r!“s LR IR L B B B BE I BB BN R BE IR BB B K BE BN IR B IR BN K BE R BE O BUBN B BN BN N BN Y NC NN W NN
x“‘cnrx“ 40 08 6T S0 CEOEEPFEEETREIIRIEEN PGPS NRNNTOCOIOEEEBNEIINOES

xx- T"‘ STATXC SCH‘DUL‘R 0660800088 ECEITILINEBILOLEINELEISIGEOIDSERD

A.
'.
c‘
D.

PREVIOUS DESIGN ...cccvcacttesccssssaccencasacnsrsannnsasasse
xmmarxm L 2L B LB B A N N K K DL BN 3K R 2 BN B B RO BN BN BE B BCBE S SN B O BN B BE S Y BN I S RN
mxrxurx“s PSSPV PR EE TN PR TI NS EENNGOEISINIIOEETITTBLYDY
xn‘onr!m T8 &0 0P ErN NGB L GBI EIIEPFEIEOINYIEITYDS

x. T“‘ Dmxc ’Cmuua (AR NEEREENERENNENEENENENNENENNENENENNENNENININENNNN]

A,
B.
C.

'uvst D's!“ €9 990480 0CHIOCESLTAELAPEPCEOEDITOEPIOEPIOEEIENERISIOTOTN
NooxerlTIONS 608 LA EALEIISEREIEELIEPIELEILINOSEEEIOSIEIERSEIENRQTRTS
xmcurxm LIE AN IR BN AR B B BE N B IR B R B L B BN B B AR BN U AR R B R BN LB B Y B 3K BK B BY N BN)

xx. T"‘ Dl'um‘a €600 &0 8¢S APOHO ROt REPTEEOINETOIBOEEESEBIOEPIOIOIERTNTIEYS

A,
B.
c.

’“vst D‘sx“ 48 595 0480085880350 0083000000000V NEDS
'“vst xmm‘r:w 4009468025080 8830000¢200008000006004d0
mxrxc‘rx“s LIE LI BB B IR K B R B R I B R Y B O Y BB BY SR B SR B B BUBE B BY R B BN BN N BN RN N

xxx. cwcbuastm“marst 5 ¢ 825000 PREEEESIIENRIIENOSEGIRNTPOTS

A.

B.
APPENDIX
AFPPENDIX
APPENDIX
APRPENDIX
APRPENDIX
APRPENDIX
APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

ARPPENDIX

APRPENDIX

APPENDIX
APPENDIX

cwcxousst LI -2 B BN B BB R Y B BN DR B RN BN R B B B BE BE BN R BE BN BEAY BN BN NY BN N N NN BT N B N RN W A)
l‘cml’st 45 8 8 5 ¢ 0P AP0 0 OOEESESETNNESLAENSSESI SISO
PODL GEAMMIMBE ..cccosconcnsesnecasssonsossansssncsnsasss
C Scuxce Code for User Interface (Cap®.C) ..vccecacsena
Shell Script for Graphic Bditor (9€) ...eesvsnvecsconss
C Source Code for Graphic Rditor (graph.c) ..icecceveens
Pascal Jource Code Graphic Rditor (nodes.p) ..cccveeees
Icon for Graphic Editor (editor.icom)cccveevennens
SSL Specification for Syntax Directed Rditor
(P.dlo..c..l) R R R R R R R R xxIXmmmmmm
33L Specification for Syntax Dirxected Editor
(pldl.\)p.lll) N R N N R R R e
I 83L Specification for Syntax Directed Editor
(p'dl.l'“...l) G4 DI IEINE RN NROIERIRROIEOIEOIRIOIEREOTS
J SSL Specification for Syntax Directed Editor
(P.dl-.do..l) 400 e eI NI VP00 ELIINITRBIOILEOIIBIENAEROSITODS
K 8SL Specification for Syntax Directed Editor
(PPdl.ol.881) ..cvivvecnrcosecesssasrnsnssacrsenssonnane
L SSL Specification for Syntax Directed Rditor
(PAL.tE.88]) ...iiurnconnnnsnnnssosssssssesscosssssonns
Kodiyak listing for Translator (translatex.X)ceee
Ada Source Code for PSDL Data Types (psdl_system.a) ...
Kodiyak listing for Static Schedular preprocessor

(p:._..ok) B80TSO LLILERLAEENIIiINERNRILOLOLLONOIBIONOEOIOELTTSES

ONMNUOE)y

o=zZzX

vi

t 1]
"
”
”
»
102
102
106
207
100
109
109
111
112
113
116
116
116
117
118
118
119
120
i1
121
122
124
129
136
137
193
207

200
218
27
229
229
230
240
269

277

P S

APPENDIX

APPENDIX

APPENDIX

APRENDIX

APPLHDIX

APPENDIX

APPENDIX ¥

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APRENDIX

APPENDIX

APPENDIX

AFPERDIX

o

AL

AF

Ada Jvurce Code for Static Scheduler driver

(d!lVﬁ‘-.) SN PP IS VTP RSN EEONNIEEISSIEE0ORREIEOEROETRTS
Ada Suurce Code for Static Schedulexr exception handlesx
(.-‘h‘ndlg:-".) P AR NSRRI ELRIEIESSOEPRECEIOSTIDNELOPESIOTTETDS
Ada Souxce Code fox Static Scheduler exception handler
(*-h,ndl.'-bil, L E P S AL SRS EADE RSSO DEe)SEEOEOES
Ada 3nurce Code for Static Scheduler glolale

‘f‘l‘ﬂt‘, P I T VI I T RN IS I NI NSO IREIIESIDEEPOEOTES
Ada Svurce Code for Static Scheduler file proceseo.
(‘P_'c‘) 2 SO R ALV IS A VISP OT LTI ISP IEEOEREIEOEESIOIOESIEEIVTOEESIOEES
Adu Source Code Zor Static Scheduler file processor
(!P_b-.) S NPT O AN TN eI EI T PEOETIAENESIIRISESIOIIEISIEEETEOESETITES
Ada Jource Code for Static Scheduler graph structure
(q:’ph._l-.) P I B P T EE S ORI LRGN TITEIEEEES
Ada Souzce Code for 3tatic Scheduler graph structure
(9:.9”'-blhl RO LW O PO GPE S PES OO PIEN SIS OSSIOEESOEDS
Ada Source Code for Static Scheduler harmonic block
builder (hbﬁ;l.l) S e At EE IS AN I SIS ERTOOIBEOENREUYTES
Ada Source Code for Static Scheduler harmonic block
builder 'hbb_Po.) 500 C e eI LA ENTIUINIIENIINIERIEIOEIESS
Ada Source Cude for Static Scheduler algoxithme
‘.ch'dul.:_...) L PPN ENIEELIPEENEENOIOEIANOIERIRPTSES
Ada Source Code for Static Scheduler algorithme
(schaduler _b.B) .civvrrrcerrerctssnressscacscvercsncnns
Ada Scurce Code for Static Scheduler list structuze
(..qu."c.—-'..) S P S0 5 ECLB ST EEEEI RPN OTOEERNOEESOEYOEDS
Ads Source Code for Static Scheduler list structure
(requenne D.B) ..iitiseesorstsetnrsrosessrsresnsrcansnas
Ada Source Code for Static Scheduler topological sorter
{E_BOXL _B.B) .vciterenrersassesratrstteranasessasssnes
Ada Souzce Code for Static Scheduler topological sorter
(t 80Kt _b.8) ..cieierervenancenceceansonssorscsnscssnes
Ada Source Code for Dynamic Scheduler
{dynamic_scheduler.s)cvcereernccncacnstessrcnsnnes

L!s‘r or R!r:nz"c‘s [N NN N N N N R N NN RN NN NN NI NN NN NN NN
I"ITIAL strnxnwxw LIST L B B I R B B L BRI B B BB B B BRI BE BN B R RN N B DY BN BE AN B NN NN NN N N)

a0
292
293
296
298
29
304
30€
310
m
ns
n?
3¢
N
341
342
33

344
mn

ACKNOWLEDGEMENTS

Dedicated tn Bear egard, Buikly and the memory of Wolfgang, special friends who
braught much love thappiness into my life during the period of this thesis.

I would like to Cxpress my gratitude to iny family and friends fur their continual
encouragement, guwlance and wisdom, which have contributed towards this thesis as well

as any othier suceess T have ever atrained.

I would also like to express my thanks 1o several people who were closely involved
with this thesis: Professor Luqi for her contributions in the foundation of this work and
for her guidunce during this research; Bernd Krsemer whose knowledge and patience |
relied upon extensively; LCDR Yurchak and LCDR Griffin for their advice and

encouragement.

Discussions with many of the faculty, sta{f and students in the Computer Science
Depatiment, 100 umerous to thank individually, contributed towards my understanding

of this work and helped me to finish this thesis in the given time frame.

I. INTRODUCTION

This thesis devenbes the development of a rapid prototyping environment. This
chapter presents a hrief e wription of the software gngineering problem and curremt
methodnlugies utlized in software development. The Prototype System Description
Language (PSDL), the Computer Aided Prototyping System (CAPS) anl PSDL proto-
types in CADPS are described bricily in the next chapter to provide a foundation for this
thenis. The design of CAPS, and more detailed discussions of many of the primary tools
in the envitonment are contpined in successive chapters. These chapters are followed

with vur conclusions and recommendations for further research.

A. SOFTWARE DEVELOPMENT

The United States Department of Defense (DoD) is currently the world’s largest user
of computers. Each year biliions of dollars are allocated for the development and
maintenance of progressively more complex weapons and communications systems.
These systems increasingly rely on requirements for systems which process information
utilizing embedded computer systems. These systems are often charactesized by max-
imum time periods or deadlines within which some event must occur, These are known
as hard real-time constraints. Satellite control systems, missile guidance systems and
communications networks are examples of embedded systems with hard real-time con-

straints. Correctness and reliability of these software systems is critical. Software

s

/

/
/

development of these systenms is an immense task with increasingly high costs and poten-

tinl for misdevelopment (1]

Over the past twenty years, the technological advances in computer hardware tech-
nology have reduced the hardware costs of a total system from 85 percent to about 15
percent. In the early 1970s studies showed that computer soitware alone comprised
approximately 46 percent of the estimated total DoD computer costs. Of this cost, 56
percent was devoted specifically to embedded systems. In spite of the tremendous cost,
most large software systems were characterized as not providing the functionality that
was desired, took too long to build, cost too much time or space 10 use, and could not

evolve 10 meet the user's changing necds [1].

Software engincering developed in response to the need to design, implement, test,
install and maintain more efficiently and correctly larger and more complex software sys-
tems. The term software engineering was coined in 1967 by a NATO study group, and
endorsed by the 1968 NATO Software Engineering Conference [2]. The conferees
concluded that software engineering should use the philosophies and parsdigms of tradi-
tional engineering disciplines. Numerous methodologies have been introduced to sup-
port software engineering. The two major approaches which underlie these different
methodologics are the waterfall model [3] of developmient with its variants such as the
spiral model (4], and the prototyping [5] method of development.

The waterfall model describes a sequential approach to software development as
shown in Figure i-1. The requirements are completely determined before the system is

designed, implemented and tested. The cost of systems developed using this model is

I W

very high. Required modifications which are realized late in the development of a sys-
tem, such as during the testing phase, have a much greater impact on the cost of the sys-
tem than they would have if they had been detennined during the requirements analysis
stage of the development. Requirements analysis may be considered the most critical

stage of software development since this is when the system is defined [6].

A

SYSTEM REQUIREMENTS
VALIDATION

l—>- SOFTWARE REQUIREMENTS |-
YALIDATION

1 PRELIMINARY DESIGN
YALIDATION

¥ DETAILED DESIGN |4+
YALIDATION

4

L CODE AND DERUG
DEVELOPMENT TEST

*1 TEST AND PREOPERATIONS |<—
YALIDATION TEST

OPERATIONS AND MAINTENANCE
REVALIDATION

Figure 1-1. The Waterfall Model

Requirements are often incompletely or erroneously specified due to the often vast
difference in the technical backgrounds of the user and the analyst. It is often the case
that the user understands his application arca but doesn't have the technical background
to communicate successfully his needs to the analyst, while the analyst is not familiar

enough with the application to detect a misunderstanding between himself and the user.

The successful development of a sofiware system is strictly dependent upon this process. .
The analyst must understand the needs and desires of the user and the performance con-

%
;

straints of the intended software system in order to specify a complete and correct

software system. Requirements specifications are still most widely written using the

English language, which is an ambiguous and non-specific mode of communication.

B. RAPID PROTOTYPING

The waterfall model lacks automation support. Systematic support using computer
aided tools has generally been unsuccessful for the waterfall model due to the informal
and heuristic nature of software system design. Fonmal modeling of software systems
and formal modeling of software development processes are key issues in automating the
software design process. Systematic reuse of software or design knowledge has also
been difficult because of the lack of specifications and explicitly recorded software '

design knowledge.

Prototyping captures selected aspects of the proposed system by generating execut-
able models during the requirements analysis stage of software development. Trial use
of these models and feedback from the users are major mechanisms used to determine if
the defined system truly meets the user’s nceds before the system is designed, imple-
mented and tested. When the requirements have been validated, the final version of the
executable prototype provides a skeleton version of the critical aspects of the proposed
software system. The prototype design should be extended into the production version of
the proposed software system. This significantly reduces the cost and time of software

development [S].

. "The rapid iterative construction of pretotypes within a computer aided environment
automates the prototyping metliod of software development and is called rapid prototyp-
ing. Computer support shortens the feedback cycle and introduces a degree of formality
into the process of determining the requirements specifications. This offers a systematic
way to rapidly tum the requirements specifications into executable prototypes which can
be observed and tested in their natural environment. Reuse of system components in the
process reduces the cost and effort in the iterative process. A rapid prototyping model
(7] as applied to the requirements analysis phase of softwaie development is shown in

Figure 1-2.

‘ ::)[:5::”“2{::!‘ REQUIREMENTS »| CONsTRUCT
REQUIREMENTS PROTOTYPE

PROTOTYPE

REQUIREMENTS '

ADJUSTMENT

DEMONSTRATE
PROTOTYPE

MODULARIZATION

SYSTEM
IMPLEMENTATION

Figure 1-2. A Rapid Prototyping Model

A formal automated prototyping process requires a rapid prototyping environment
{8). Such an environment can provide the designer with an integrated set of tools which
are used o design and test prototypes interactively. The requirements analyst and the
user may both abserve the behavior of the prototype and ensure that the requirements
specifications meet the needs of the user. Rapid prototyping provides an efficient and
precise means to determine the requirements for a software system, and greatly improves
the likelihood that the software system developed from these requirements will be com-
plete, correct and satisfactory to the user.

This thesis is part of a comprehensive framework for computer aided prototyping
which includes language support, methodological support and toel support. The com-
puter aided prototyping system is a pioneering effort with a long term impact on the auto-

mation of software design.

II. BACKGROUND

A. THE PROTOTYPING SYSTEM DESIGN LANGUAGE (PSDL)

PSDL (9] was designed as a prototyping language to provide the designer with a tim-
ple means to specify a high-level description of a software system. PSDL is an ideal
language for a rapid prototyping environment and is the prototyping language used by
the Computer Aided Prototyping System (CAPS). The design of PSDL places a strong
emphasis on modularity, simplicity, reuse, adaptability, abstraction, and requirements
tracing [S).

Modularity is essential for effective modification. Good modularity implies a proto-
type which is realized by a set of independent modules with narrow and explicitly
specified interfaces. PSDL supports this concept by means of operators and data streams.
Two distinct operators can communicate or affect each other's behavior only when a data

stream explicitly connects the two operators.

Simplicity is supported by the small set of powerful constructs provided in PSDL.
PSDL designs are networks of operators connected by data streums. These networks can
be represented as data-flow diagrams augmented with timing and control constraints.
Operators in the system can represent functions or state machines. The data streams

carry exception conditions or values of arbitrary abstract data types.

PSDL supports reuse through uniform specifications suitable for retrieving reusable

cumponents from a software base. The specification part of a PSDL component contains

several attributes which describe the interface and behavior of the component. These
attributes can be used to generate automatically uniform specifications for storing and

retrieving reusable components,

PSDL supports adaptability through its ability to make small modifications to
modules by means of the control constraints, Control constraints affect modules in
several ways, They can be used to impose preconditions on the execution of a module,
filter the output of a module, suppress or raise exceptions in specified conditions, and to
control timers. These facilities provide the means to modify the behavior of a module

independently of its implementation.

PSDL provides abstractions suitable for describing large systems which may contain
real-time constraints. These abstractions include control constraints, timing constraints,
timers, functional abstiactions and data abstractions.

PSDL supports requirements tracing by means of a construct for declaring the
requirements which are associated with each part of a prototype. This is important
because the prototype must adapt to the changing perceptions of the requiremnents result-

ing from evaluations of the prototype behavior.

The computational model underlying PSDL can be described by an augmented graph
G =(V,ET,C). V is a set of vertices. E is a set of edges. T:V->R U { oo } (where R
denotes the set of real numbers) is a function assigning the maximum execution time for
cach vertex in V. PSDL permits bounded and unbounded maximum execution times.
C:V->R U | oo } is a function assigning the control constraints for each vertex in V. In

this graph a vertex represents an operator and an edge is a data stream.

OPERATOR A
TRIGGERED BY.SOME a, b

S 10ms 20ms
A ¢ . B d
P /

Figure 2-1. PSDL Graph

Figure 2-1 shows an example of a PSDL design graph with operators A and B, and
data streams a, b, ¢, d. The graph also indicates timing constraints, 10 ms for A and 20
ms for B. Control constraints are provided for operator A. The intended meaning of this
specification is that operator A receives input data on data streams a and b, processes the
data within 10 ms, and outputs data on data stream ¢. Operator B receives input data on

data stream c, processes the data within 20 ms, and outputs data on data stream d.

Operators represent functions or state machines. A function produces output whose
value is solely dependent upon the input values. A state machine produces output whose
value depends upon the input values and on internal state values representing soine part
of the history of computation. Operators can be triggered either by the arrival of input
data values or by periodic timing constraints which specify the time intervals for which
an operator must fire. PSDL operators aic atomic or composite. Atomic operators

represent single operations and cannot be decomposed into subcomponents. Comnposite

9

operators represent netwarks of operators and data streams into which the operators may
be decomposed. Operators are also either periodic or sporadic. Periodic operators fire at
regular intervals of time while sporadic operators fire when there is new data on a set of

input data streams,

Data streams represent sequential data flow mechanisms which move data between
operators. Data streams are cither data flow data streams or sampled data streams. Data
flow data streams are similar to FIFO queues with a length of one. Any value placed into
the queue must be read by another operator before any other data value may be placed
into the queue. Values read from the queue are removed from the queve, Sampled data
streams may be considered as a single cell which may be written to or read from at any

time and a3 often as desired.

Timing constraints are essential for real-time systems. The timing constraints
impose an order on operator firing which is based on timing rather than on data flow.
There are three basic types of timing constraints: 1) maximum execution time, 2) dead-
line or maximum response time, rid 3) minimum calling period. Maximum execution
time is an upper bound on the length of time that an operator may use to complete its
function. Deadlines apply only to periodic operators and maximum response times apply
only to sporadic operators. For periodic operators, the deadline is an upper bound on the
time between the beginning of a period and the time that the operator places the last out-
put value onto a data stream during a period. For sporadic operators, the maximum
response time is an upper bound on the length of time between the arrival of one or more
new data values on an input data stream and the time when the final output is placed on

an output data stream. The minimum calling period applies only to sporadic operators

10

B VU YL SO S U SO

and represents a lower bounrd 9n the time between the artival of one set of inputs and the

arrival of another set of inputs,

Control constraints are the mechanisms which refine and adapt the behavior of PSDL
operators. They specify how an operator may be fired, how exceptions may be raised,
and how or when data may be placed onto an operator’s output data streams.

The PSDL Grammar is shown in Appendix A.

B. THE COMPUTER AIDED PROTOTYPING SYSTEM (CAPS)

CAPS is a unique rapid prototyping environment which includes the ability to proto-
type hard real-time systems. CAPS utilizes PSDL and an integrated set of prototyping
tools. The tools are integrated through the user interface. The primary tools in CAPS
may be divided into three main subsystems {5]. The subsystems and their tools are;

(1) the User Interface which is comprised of:
- a Graphic Editor (10}
- a Symtax Directed Editor {11)
- a Browser [5)
- ant Expert System {5)

(2) the Software Database System which is comprised of:
- a Sofiware Design Management System (5]
- a Design Database (12)
= a Software Base [13]

(3) the Execution Support System which is comprised of:
- & Translator [14]
- a Static Scheduler {15,16])
- a Dynamic Scheduler [17]
- a Debugger [17]

11

‘I'he Graphic Editor is a tool which permits a designer to specify the portions of a
PSDL prototype using graphical objects to represent the system, Graphical objects
include opzrators, inputs, outputs, data flows and self loops on operators. All graphic

chjects are named and may have time constreints associated with them,

‘The Syntax Directed Editor is used by the designer to enter the textual portions of the
prototype design not represented by the graphic editor and to ensure that the prototype is
syntactically comrect PSDL.

The Browser provides a means for the designer 1o view reusable components in the
software base,

The Expert System provides a paraphrasing capability that gencrates English text
descriptions of PSDL specifications. This tools permits users who are unfamiliar with
the PSDL language to evaluate a prototype.

The Software Design Management System manages and retrieves the versions,
refinements and altemnatives of the prototypes in the design database and the reusable
components in the software base.

The Design Database contains PSDL prototype descriptions for all software projects
developed using CAPS.

The Software Base contains PSDL descriptions and implementations for all reusable
software components developed using CAPS.

The Translator generates high level code from the PSDL prototype which binds the

reusable components from the software base to the executaole prototype.

‘The Static Scheduler attempts to allocate time slots for the representaticns of PSDL
operators with real-time constraints before the prototype is executed. If tne allocation

succeeds, all operators are guaranteed to meet theic deadlines,

The Dynamic Scheduler invokes representations of operators without real-time con-
straints at run-time to occupy time slots which are not used by operators with real-time
constraints. The time slots which the dynamic scheduler uses are considered as "slack
times". Dynamic scheduling occurs during execution of the prototype.

The Debugger allows the designer to interact with the execution support system, The
debugger has facilities for initisting the execution of a prototype, displaying execution
results or tracing information of the execution, and gathering statistics about a

prototype's behavior and performance.

Prior to the work described in this thesis, partial implementations had been
developed for the graphic editor, translator and the static scheduler. Designs of an expert
user interface and a debugger had been defined. Feasibility studies had been conducted

for the syntax directed editor, design database and the software base.

C. PSDL PROTOTYPES IN CAPS

PSDL prototypes are described by the designer in the graphic editor or the syntax
directed editor. Once a prototype hes been specified, the tools within the execution sup-
port system will construct an executable view of the prototype and then actually execute

the prototype. The execution support system assumes a syntactically correct PSDL

description.

13

PN

SRR N SIS

PSDL protoiype components are either & operator or & data type. A PSDL proto-
type may centain multiple type and/or operator components. All PSDL components have
a specification part and an implementation part. The implementaticn part may either be a

PSDL implementation or an Ada implementation.

The purpose of the two different implementation constructs is to provide a simple
means {or decomposing a prototype. A PSDL. prototype can be represented by a tree
structure, The leaves of the tree are atomic level components and they comtain Ada
implementation parts. Figure 2-2 contains a simple top level graphic representation of a

PSDL prototype.

INPUT ouTPUT

Figure 2-2. PSDL Prototype

If the node SYSTEM has a match in the software base of reusable Ada software com-
ponents, then the node SYSTEM is atomic and comprises a complete description of the
prototype SYSTEM. In this case no further decomposition is required. If a match for
SYSTEM is not found in the sofiware base then the node SYSTEM is considered a compo-
site operator, In this case the designer has two choices. If the designer does not recog-
nize a conceptual decomposition of SYSTEM then the designer considers SYSTEM as
atomic although an Ada representation does not already exist. The designer may then

provide an Ada implementation for SYSTEM. The Ada implementation will be intemnally

14

P S W »

substituted for the PSDL implementation. The prototype would then be completely
described and is atomic. The Ada implementation will become a persistent component in
the software base and will be matched in future seisions witli CAPS. If the designer real-
izes a decomposition for SYSTEM, then the designer will decompose the composite
operator with SYSTEM as the root of the tree, An example of a possible graphic decom-
position is shown in Figure 2-3. The new operators resulting from the decomposition are

children of the operator SYSTEM in the tree structuro,

SYSTEM

INPUT FLOW /\
e t—— . -~

or_l -~ or2

ourrur

Figure 2-3. Decomposed PSDL Prototype.

The identification and decomposition is recursively applied until the leaves of the
tree all contain Ada implementations. A possible complete tree structure for SYSTEM
can be a sinigle node. The complete tree structure will have a depth which is defined by
the maturity and modularity of the software base and/or the designer's concepiual model
of a properly decomposed system. A possible complete tree structure for a PSDL proto-
type is shown in Figure 2-4. It has two composite operators; SYSTEM and OP_2, and

three atomic operators OP_1, OP_2A and OP_2B.

15

7

e

oP-24 OF_2B
N
Figure 2-4. Tree Structure For PSDL Prototype. .

A particular software base will eventually contain decompositions which refiect the
style of thinking used by its designers. It will become customized to its users as it
matures. The reusable components which are added to an initial software base reflect the
level of decomposition that the designers utilize in describing the systems which they
decompose, If the designers decide to provide Ada implementations at a high level of
decomposition then the reusable components may tend to be large in size and may gen-
erally be very specific to certain applications. If the designers decompose the system into
very small modules, then the Ada implementations in the reusable software base will
tend to be very small and will more likely occur more frequently in the design of succes-

sive systems.

. ®

The evolution of the software base of reusable components reflects the designers
preference between using PSDL and using Ada to express their own concepts of a sys-

tem. The design database will also reflect the style of its users.

The success of any rapid prototyping environment is strongly linked to the means by
which the designers may describe their prototypes. CAPS provides two means of
describing prototypes: the graphic editor and the syntax directed editor, The majority of
the designs in the design database will eventually be in the form that the users prefer.

The provision of two means for user input is an important human factors feature.
CAPS does not attempt to constrain a designer to one mode of input. While visual pro-
gramming [18) is gaining momentum in research, the designers of CAPS recognize that
constraining a user to one particular mode of input which emphasizes just one method of
abstraction might possibly reduce the effectiveness of the envirornment when applied

across a broad sample of users.

A current research question with regard to rapid prototyping is whether or not it is
really necessary to design a new language specifically for prototyping, and if so, what arc
the necessary features and characteristics of the language?

The influence of any language on the problem domain must be considered. In this
regard, MacLennan refers us to the Sapir-Whorf hypothesis [19] which states that the
structure of language defines the boundaries of thought. The use of a given language
does not prevent certain thoughts but does facilitate or impede certain modes of thought,
This lends support to the idea that a careful choice of language can reduce the conceptual

barriers in the design of embedded software systems.

17

- nf

)
Computer languages have evolved over time in response to the Jmive& pr
of existing languages. As languages have evolved, important principlek which relate t

A
the design, evaluation, and implementation of languages have evolved & well. Ada has \
\\
been designed as a response to DoD's need for a standard language whi p}uides all of R

the features we currently perceive as necessary to develop and maintain large softwilice.

systems. Ada contains features which were not encompassed in an)! one. previously \\
existing language. Since our rapid prototyping environment is aimed u\uge, real-time, ﬁ
embedded systems, our executable prototypes must be able to be cxpreaid in Ada. Ada
is a complex language which supports abstraction, information hiding, modularity, locali-
zation, uniformity, completeness and confirmability. The complexity of AL leads to the

need for a prototyping language.

The prototyping language must provide a simple yet expressive means for a designer
to describe a system. The prototyping language must support a cost effective means to ‘
establish the requirements of a system. The prototyping language mmust support the

features of the Ada programming language. PSDL meets these requirements (20].

. ®

]
o

III. DESIGN ISSUES FOR THE DEVELOPMENT OF CAPS <

The design and feasibility study of CAPS has been partially influenced by local
resources, personnel and equipment. Although the primary researchers are permanently
assigned, the secondary researchers are mostly students with diverse backgrounds who
are atle to devote only a short period of time towards development. Student contribu-
tions have varied in methodology and programming languages used, and they reflect the
somewhat diverse backgrounds of the many students who have been involved. The
development of CAPS has been a long term project. The design and feasibility study for
the implementation of the underlying prototyping language has occurred over the last five

‘ years, and continues to progress.

A. CAPS SYSTEM CONFIGURATION

The initial step in the development of our rapid prototyping environment was to
define an interface between tools and a system configuration. The best utilization of pre-
vious work in the design and implementation of CAPS tools was an essential facter in
our decision. The previous development of CAPS tools utilized and assumed the availa-

bility of a Sun Workstation. 1

There were two primary methods of integration considered for the initial develop-
ment of CAPS. One method was to define an interface which would manage a collection

of loosely coupled tools. The second method was to define a software architecture as a

foundation for tool integration.

The Sun Operating System provides the simple UNIX (21] interface of the text

stream. The UNIX method of tool integration defines an environment which consists of a
collection of loosely coupled tools. An advantage of this method is its simplicity. An
environment shell program which provides the interface with the user and manages the
communications between the tools provides an easy means to integrate new tools and to
extend the capabilities of existing tools. A disadvantage of this method of insegration is
that it may result in multiple data components which represent a prototype. Each data
component produced by a particular tool is most likely a partial view of a complete pro-
totype whic: reflects the transformation of data performed by each particular tool. Other
disadvantages of this method are that the interface must be modified to add or remove
tools from the system and that the environment contains a lesser deg-ee of integration

granularity,

An example of the second method of integration is the Illinois Software Engineering ‘
Program (ISEP) [22] which describes an open systems architecture for tool integration.
This method defines a software bus which prevides for the interconnection and intercom-
munication between the tools within the environment. All tools communicate with other
tools by means of a set of communication protocols specially defined for each tool. Any
two tools may communicate which have a common set of protocols. The advantage of
this methodology is that it is intended to support the integration of new tools indepen-
dently of the other tools in the environment. The disalvantage of this methodology is

that it requires the development of a complex set of protocols for each tool in the

enviropment.

: °

S S SR S S

The previous work on the bottom-up development of the CAPS tools assumed the
first method of integration, Due to this assumption and its simplicity we chnee to connect
the tools within the CAPS envirenment in the UNIX fashion by passing streams of dsta
between the different tools.

The system configuration for CAPS is a natural decomposition of the CAPS design.
A system directory is considered the root of the environment with subdirectories for each
of the tools, The subdirectonies contain the required components that make up each of
the tools and contain documentation specific to each tool.

B. METHODOLOGY FOR INTEGRATION

The first implementation requirement for the environment is the user interface, since
it is the user interface which manages the tools in the environment. Once a basic user
interface was designed, we realized that the process of integration would be a somewhat

circular process with iterative refinements.

The interdependence of the CAPS tools required us to simulate the functionality of
some tools while testing other tools. We decided that the most natural tools to include in
the initial integration process were the tools within the user interface. The directory pro-
totypes in the system configuration simulates the storage locations of both the design
database and the software base. We realized that the database management functions
could be performed manually until development, integration, and testing of the databases

could be perforcd.

21

A systematic approach for the integration of a partially developed set of tools was
established which would make the best use of previous work, The integration methodol-
ogy for the tools consists of ten primary steps:

Step 1
Identify, locate and relocate all of the subcomponenis and products of a particular
tool. The subcomponents were relocated to form an identifiable modular representa-

tion of cach particular tool.

Step 2:
Determine the dependencies between the subcomponents of each tool and to deter-
piine how each subcomponent was intended to interact with the other subcom-
ponents.

Step 3:
Resolve any naming conflicts which existed with the subcomponents of a tool or the
data it produced with the names expected by other tools in the environment.

Step 4:
Determine how to compile the various subcomponents, and to determine which sys-
tem libraries needed to be linked with each subcomponents.

Step 5:
Separate the functions! components of a tool from the partial views of a prototype
which were used by the previous developers to test their tools and to load these sub-

components in the proper places within our system configuration.

22

Step 6
Test each tool to validate the functionality of the tool with its previous documenta-
tion. In most cases the previous documentation did not mske much distinction
between the long term designs and the state of the actual implementations of the
tools.

Step 7:
Identify areas of functionality which would significantly improve the usefulness of
cach tool.

Step 8:
Correct bugs discovered during the sixth step, implement features of the tools which
were described in the previous design but which had not actually been imple-
mented; and implement features identified in step seven.

Step 9:
Identify test cases which were appropriate for the current state of the environment

and test the tool from within CAPS.

Step 10:
Document the results of the ninth step and to document any new ideas which

resulted from the integration testing and evaluation of the current tool.

C. PORTABILITY AND SYSTEM DEPENDENCIES

The primary goal of the CAPS designers is to focus on the design and feasibility of

developing a rapid prototyping environment and not on the development of a production

23

TorawT

system, Aun carly decision was made to accept dependence upon the best locally avail-

able resources. Portability of our particular environment is considered a secondary goal.

Our implementation currently uses the local Sun system configuration and depends
on features of the local installation such as the server and printer names on our Sun NFS.
The use of these local resources enhances the development process by permitting more
flexibility in the use of local resources shared by many other students and faculty & our
research location. The use of system dependent name definitions have been localized to
the front end of the user interface. This localization allows the system to be redefined

with minimum effort.

An carly decision was also male to utilize existing tools for the development of our
own tools and our environment. Part of the research involved with the development of
our environment and its tools was to survey and evaluate existing tools which were
potential candidates for use in developing our tools or as candidates to be integrated into

CAPS to represent one of our tools.

1Y. THE USER INTERFACE

A. PREVIOUS DESIGN

The previous design of an expert user interface (23] defines an interface which pro-
vides sequence control with data protection, The user interface guides a user through the
rapid prototyping process according to the following guidslines [23):

- "The interface must be able to interpret what the user is doing at
any time and provide support”.

- "The expert system must communicate with the users to find out what
they want to do at any moment when the system cannot be sure of the
user's intentions”,

‘ The following goals were defined in the design of the user interface:

- Required input data should only be entered once.

- Feedback should always be provided during data entry.

- The user interface should be adaptable to accommodate both the
novice and the experienced user.

The major commands defined in the top level user’s manual were:

- caps
- construct
- execute

- modify

B. PREVIOUS IMPLEMENTATION

An implementation for the user interface had not been previously developed. Raum

[23] described and implemented a link statement analyzer as part of the user interface.

The link statement analyzer translates the link statements gencrated by the graphic editor

into textual PSDL constructs,

The input to the link statement analyzer is a data component produced by the graphic
editor and! stored in the file graph.links. The data in this file are PSDL link statements
which represent the graphic structure of ® PSDL design. The form of a link statement
without an optional maximum exzcution time is namie.yource->sink where name is the
name of the data, and source and sink are either the keyword EXTERNAL or names of
operators. The form of a link statement with an MET is name.source:MET->sink. Fig-
ure 4-1 (&) shows a PSDL design produced with the graphic editor. The corresponding

link statements generated are depicted in Figure 4-1 (b).

The link statement analyzer processes the link statements and generates two new data
components. A file called psdl.ds is created which contains a list of all PSDL data
streams in the graph. Additional files are created for each operator in the graph., These
files are called NewNode XX, where the XX represents arbitracily assigned consecutive
numbers. The NewNode XX files are textual PSDL specification pans which contain all
the information about an operator which was entered through the graphic editor. These
files are intended to represent the prototype in the design database. This design does not
account for multiple instances of prototypes, or describe how related components are
linked together in the design database. Figure 4-2 (a) shows the data component psdl.ds
and Figure 4-2 (b) shows the data components NewNode.C! and NewNode.02.

Although the link statement analyzer was first designed as part of the user interface,

we now consider it to be a component of the graphic editor.

26

10m3 20ms

op_1l c «

4

\

()
a.EXTERNAL->op_1
b.EXTERNAL->0p_1
c.op_1:10 ms~>op_2
d.op_2:20 ms->op_2
e.op_2:20 ms->EXTERNAL

(®)

Figure 4-1. PSDL Graph and Link Statements

27

DATA STREAM ¢

()

OPERATOR op_1
SPECIFICATION
INPUT @
b
OUTBUT ¢
MAXIMUM EXECUTION TIME 10 ms
END

OPERATOR op 2
SPECIFICATION

INPUT ¢

STATE d

OUTPUT ¢

MAXIMUM EXECUTION TIME 20 ms
END

(b)

Figure 4-2, Products Of The Link Statement Analyzer

C. MODIFICATIONS TO THE DESIGN

Our modifications and enhancements to the previous design addressed the following
issues:

- the responsibilities of the user interface
- amethodology for user interaction

- the menu functions

- view consistency

1. User Interface Responsibilities

We redefined the meaning of the user interface for implementation purposes.
Raum's design of the user interface maintained the idea that the user interface was one of
the three main components of CAPS. Raum described Boume Shell Scripts which only
managed the activities of the components of the user interface, such as the graphic cditor,
syntax directed editor, browser, expert system and the debugger. As described in the pre-
vious chapter we now view the user interface as the shell of the environment which
interacts wish the user and manages all of the tools within the CAPS environment and not
just the tools which interact with the user. The effect of this modification changes the

responsibilitics of the user interface.

The caps command was originally intended to be used to place the user into the
user interface portion of CAPS. The original c4ps command was to allow an optional
argument to assign a name (o a new prototype. The caps command is now used to enter
the CAPS environment. The specification of a prototype name is not appropriate at this

level and the names of prototypes will be controlied from within the environment.
2. Methodology For User Interaction

We decided to design a simple menu driven interface for our initial integration.
Since the functionality of the user interface had not yet been well defined, we wanted to
provide a simple mechanism for integrating the previous work on the various tool *’e
chose text menus as our first mechanism for user interaction. We decided to utilize
mnemonic lettering for option selections. Selections are made by typing the first lower

case letter of an option at the prompt. The character selection mechanism only requires

29

that the user remember the activity that he wishes to be performed. This approach sup-
ports type-ahead selections and system evolution [24]. Ultimately, we intend to imple-

ment a graphic interface.
3. Menu Functions

We defined menus which guide the user through the process of rapid prototyping.
The main menu contains the functions:
= construct
- execute

- modify
- quit

The construct option places the designer in another menu which displays the

choices of construction tools. Currently the choices are to use the graphic editor or the

syntax directed editor.

The execute option activates the execution support tools. These tools are the
translator, the static scheduler and the dynamic scheduler. After these tools produce the
data components which represent the executable prototype, the data components are

automatically compiled, linked, and executed.

The execution status messages were previously defined as:

Translation Complete

Static Scheduler Complete
Dynamic Scheduler Complete
Compilation Complete
Linking Complete

Execution Complete

These messages were used to bridge the wait time the user experienced while these

actions are performed. These messages were to be displayed after the action occurred.

30

We realized that a message which informs a user of the current activity rather than the
previous cause of delay, is generally more satisfactory. The status message for linking
was detenmined to be unnecessary, The execution support tools each produce data com-
ponents which partially represent the executable prototype. All data components are
compiled and linked during the compilation state. We defined two status messages
which reflect the execution of the prototype. Since the execution of an embedded system
implies a continuous system, we defined an additional status message which responds to
a user input of tuming off the system. The current staias messages are:

Translating ...

Building Static Schedule ...

Building Dynamic Schedule ...

Compiling ...

Executing ...
Execution Complete

The modify option had not yet been well defined in the previous documentation.
We have defined the modify process to be equivalent to the con.r'f.r't‘w! process with one
major difference. When the modify option is selected a window should be opened which
contains the top-level names of all existing prototypes in the design database. The user
should be able to select a prototype for modification by selecting an entry with the
mouse. If the user selects a prototype with a .graph suffix, the graphic editor should be

automatically activated by the user interface. If the user selects a prototype with a .fext

suffix, the syntax directed editor should be automatically activated by the user interface.

The quit option was not defined in the previous documentation. The quit option

should be used to permit the user to clean up versions of prototype designs which were

k) §

generated during the current session before exiting the envitrnment. This process could ‘

occur as shown in Figure 4-3,

Do you wish to save:

prototypel.text? (y/n)
prototypel.graph? (y/n)
prototype2.text? (y/n)
prototype2,.graph? (y/n)

- 4

e o2 e 2

Figure 4.3, Quit Process

4. View Consistency

A view is a representation for a particular abstraction. Multiple views may be
associated with the same abstraction. View consistency defines a principle where multi-
ple views of the same abstraction are always equivalent. This means that a change in one
view must be reflected in all other views which represent the same abstraction. View
consistency between the graphic and textual representations of prototype designs was an

important issue of integration which still requires further consideration.

Since the construction of a prototype design is expected to be an iterative process,
consistency issues are an immediate concem. Because CAPS supports the evolution of
software systems which may be developed and maintained by a large number of develop-
ers, we should not constrain the view of a prototype to the preferences of one particular
user. A view of a prototype may be required by muitiple users in the development pro-

cess, and may be required by many other users during evolution.

32

AW and St

iaks

Ao

‘The view consistency problem is affected by the capabilities of the graphic editor
and the syntax directed editor. This means that the problem is different dependent upon
whether a prototype may be completely or pactially described within cach tool. If we
constrain the capability of the graphic editor to describe only a simple data-flow diagram
which represents the PSDL graph construct and not permit the capability to completely
describe the prototype, then we define this as a partial graphic view, If the syntax
directed editor does not permit the capability to describe textually the link statements of &
PSDL graph construct, then we define this as a partial textual view. If a prototype may
be described completely within the graphic editor or the syntax directed editor, then we
define these views as a complete graphic view or & complete textual view. The method
of interaction between the construction tools will be dependent upon the final capabilitics

of the tools.

An initial view consistency exists for prototypes designed with the graphic editor.
The graphic editor gencrates a textual representation which is used by other tools later in
the rapid prototyping process. Our initial pipeline communication design will not ade-
quately support view consistency for prototypes which were initially described as a tex-

tual representation or for modified textual representations.

The problem with view consistency for textual representations is that the two
dimensional translation of logical objects into a graphic representation does not have a
generally satisfactory solution. Even if both tools utilize a common data structure, the

logical objects in the common data structure would still require a graphic translation for

the layout used in the graphic editor.

-

One solution which supponts view consistency is to define the graphic editor as
the primary construction tool from which the prototype is completely described. The
interaction with the graphic editor would produce a partial graphic view and interaction
with the syntax directed editor would produce a partial textual view. ‘The graphic editor
would utilize the syntax directed editor s an underlying mechanism to provide for
describing its textual attributes. The interaction between the editors must be defined so
that objects which are defined graphically cannot be modified by the syntax directed edi-
tor. This requires that the user have limitied access to the textual representation of a pro-

totype within the syntax directed editor.

C. IMPLEMENTATION

The user interface was implemented in the C programming language [25). This
language was chosen due to the ease with which it interfaces with the unix shell. The use
of the C programming language gave us the power and structure of a high level language
and still provides very casy access to shell commands from within the program to

manage the various CAPS tools.

The simplicity of our menu design enables a user to travarse the system with an ease
comparable to that provided by graphic interfaces. If an invalid selection is entered by
the user, an error message is displayed, and the user may enter another selection. An

sample of the menu design is provided with the main menu in Figure 44,

34

COMBPUTER AXDED RROTOTYXPING SYSTEM
{c) onstxuct
{e) xecute
{(m) odi Ly
(9) uit

Select Option:

Figure 4-4. CAPS Main Menu

Each valid selection from a menu clears the screen, then cither places the user in a
submenu if further choices are available or places the user within the environment of a
particular tool. This occurs by creating a new unix process which executes the desired
tool as a concurrent process with the user interface or any other currently active tools.

The implementation of the user interface is contained in Appendix B,

35

Y. THE GRAPHIC EDITOR

A. PREVIOUS DESIGN

The graphic editor [10] was designed to support efficient construction and
modification of the graphical representation of PSDL prototypes. The graphic editor
assumes that it is running on a Sun Workstation with a three button mouse. It uses both
keyboard and mouse inputs. The control options of the graphic editor include load exist-

ing prototype, store current prototype, and quit the graphic editor.

Graphic representations of PSDL prototypes can be created by selecting the follow-
ing editing modes:
- draw operator
- draw input
- draw output

- draw data stream
- draw self loop

The graphic symbols which represent the comresponding language constructs are created
by the following process:
1. Position the mouse locator at the desired position in the drawing space.
2. Press the left mouse button down.
3. While holding the left mouse button down, move the mouse
to a position which defines the size or length of the object.
This rubber bands the type of object chosen in the editing mode.

4. Release the left mouse button when the desired length or location
is obtained.

36

SV S

2 N S

SO Sy

The keyboard and the text input mode are used to define identifier names and maximum
execution times (MET), All operators, inputs, output< £ ta streams and self loops must
have identifier names specified. Additionally all opcrators must additionally have METs
specified. Objects ate deleted by positioning the mouse on an object and pressing the

right mouse button. Etror messages are overiaid in the drawing space.

The layout of the previous graphic editor is shown in Figure 5-1.

M -4 i st T [N NN I L BN L TR D k) TENLE Ry e LN S Twe

Cleslaias] Cink O

Editing Mode ¢ DRAW DATA STREAM DRAW SELFLOOF DRAW INPUT DRAW OUTPUT

Identifics Nome xR)

Max Exec Tome : CxormEr)

* gystem control group I editing mode group + text input group

Figure 5-1. Previous Graphic Editor

37

i awal s ks Ak

All graphic representations of designs are to be stored and managed by the design

database. Thorstenson [10] states that;

"If the graphical editor is going to be used to edit an existing diagram,
the user interface function must retrieve the necessary reconstruction in-
formation from the design database and store the information in a file
named graph.pic prior to invoking the editor, The graphical editor then
reads in this information and reconstructs the diagram.”

The graphic editor only allows objects to be related to other objects as defined by
PSDL. Operators are represented by bubbles. Bubbles may not overlap. Data streams
are represented by arrows where both the tail and head 6 the arrows are connected to
operators. Inputs are represented by arrows whose tails must be positioned in unoccu-
pied drawing space and heads must be connected to an operator. Outputs are represented
by arrows whose tails are connected to an operator and heads are positioned in unoccu-
pied drawing space. Self loops which represent state variables appear as arrows whose
tails and heads are both connected to the same operator. PSDL operator decomposition
also requires that all of the components of an operator are named. The graphic editor
will not permit an object to be entered into the drawing space until after the identifier
name has been entered and validated in the text input mode. PSDL operators also have a
MET associated with them which must also be specified before they may be drawn in the
drawing space. The identifiers must be syntactically correct Ada identifiers. The form of

a syntactically correct identifier is shown in Figure 5-2.

38

identifier :i= letter ([{underline] letter_or_digit)
letterx {i= upper_case_letter | lower_case letter
letter_or digit ::= lettex | digit

Figure 5-2, PSDL, ldentifier

The form of a syntactically correct MET is shown in Figure 5-3. User input which
fails to meet the syntax requirements of PSDL is ignored, such as an input without an

associated operator, or an output without an associated opetstor.

MET tim cligit_string {time_unit)
digit_string ::= digit | digit_string
time_unit tim th | fm/ | ‘3" | ‘ms’

Figure 5-3. PSDL MET

Previous documentation did not describe any direct interface between the graphic:
editor and the syntax directed editor, nor did it describe the decomposition of a prototyp:

design from within the graphic editor.

B. PREVIOUS IMPLEMENTATION

The implementation of the graphic editor utilizes the suntools, sunwindows, pixrect
and math libraries on a sun 3 system. The implementation of the graphic editor consists

of programs written in C, Pascal and UNIX C Shell.

39

C. INTEGRATION

The integration of the graphic editor into CAPS required that the component parts
which comprise the graphic editor and the data components produced by the graphic edi-
tor be identified and relocated into our system configuration. The dependencies between
the graphic editor components and the data components were also identified. The user
interface was modified to activate the graphic editor when the designer selected it from

within the construction menu.

The components which comprise the graphic editor reside in the directory:

[caps/graphic_editor. These components are:

editoricon - icon for graphic_editor window

ge - C shell script program

araph - executable window based graphic editor
graph.c - C source code for graph

makid - executable utility to comnpile graph.c
makid.c - C source code for makid

nodes - graphic design link analyzer

nodes.p - Pascal source code for nodes

The products of the graphic editor which represent views of a prototype are placed in the

directory: /caps/prototypes.

The graphic editor is selected by the user interface (/caps/caps). The user interface calls
the graphic editor by creating a new process, which is a copy of the current process, and
then overlaying the new process with the script program, ge. This code segment is

shown in Figure 5-4,

40

LE (foxk() == 0) {
code = execl(SKELL, SHELL, *-£", GRAPHIC_EDXTOR, 0)
exit (code)

SHELL represants /bin/csh

GRAPHIC_EDITOR repreasents /n/suns2/woxk/caps/grsphic_editoz/ge

Figure 5-4. Code Segment

ge is dependent upon:

[caps/graphic_editor/graph
[caps/graphic_editor/nodes

ge creates the following file:
[caps/prototypes/psdl.imp

graph.c is compiled by "makid graph.c”
which is equivalent to "cc graph.c -o graph -lm -lsuntool -lsunwindow -lpixrect”

graph is dependent upon:
editor.icon

graph creates the following files:
[caps/prototypes/graph.links
[capsfprototypes/graph.pic

nodes.p is compiled by "pc nodes.p -0 nodes"

nodes is dependent upon:
[caps/prototypes/graph.links

nodes creates the following files:

[caps/prototypes/psdl.ds
[caps/prototypes/NewNode. XX's

41

D. INTEGRATION TESTING

The following inconsistencies, missing features or important enhancements were

identificd during the testing of the grmphic editor.

1) The frame title in the previous documentation was stated as Graphical Editor. The

frame title in the implementation was datafiow diagram editor.

2) There was no facility 10 print a hardcopy of a prototype design. The ability to print a
hardcopy of the graphic representation of a prototype was also determined to be an
important enhancement for documentation purposes. The use and capabilities of the
graphic editor could be described ir. written documentation much more clearly with the

ability to show the format of the graphic editor,

3) The graphic editor utilized only a portion of the monitor. The defsult window size of
the graphic editor was proportional to the monitor and used about 75 percent of the avail-

able screen space.

4) A scgmentation violation occurred intermittently. On a UNIX system a segmentation

violation indicates that a pointer has an assigned address outside +f the user’s data space.

5) Whenever an input, output or data-flow was erased from the drawing space, the last

pixel on the tail of an input, output or data-flow remained visible.

6) The functions of the mouse buttons were not visibly described within the screen

image of the graphic editor.

7) The graphic editor waming and error messages were displayed in the drawing space,

permitting the possibility of overlaying the graph.

42

——

8) The graphic editor has separate store and quit buttons yet the user was not permitted
1o exit the graphic editor via the quit button unless the design had becn stored first.

9) The operator data components produced by the link statement analyzer were not com-
plete specification constructs.

10) The command line help facility was not effective once the graphic editor was
integrated into the environment.

11) The delete operation was unpredictable. This feature was not completely imple-
mented in the previous implementation,

12) Inputs, Outputs and Data-flows were not clipped. These symbols are drawn exactly
as specified by the mouse inputs and not adjusted to the edges of the operators. The
impact of this is that the construction of a nice looking prototype can become tedious.
This problem becomes worse on workstations with smaller monitors.

13) The graphic editor requires that the desigrier selects the tail position of an input, out-
put, or data-flow before the designer selects the head position of the input, output, or
data-flow. If the designer selects the end points of an input, output or data-flow in the
head then tail order, the input, output or data-flow simply dissppears without any expla-
nation as to why the object was ignored. This is a cumbersome and unnecessary con-
straint on the user.

14) The objects in the graphic editor cannot be resized.

15) The objects in the graphic editor cannot be maved once positioned.

16) Data flows cannot be inverted.

43

17) ‘The keyboard inputs for the identifier names and maximum execution times are
translated to literal text characters. Backspaces used while entering these fields appear to

behave normally but show up as control characters in the output files.
18) The names of objects 1 the graph are not required to be unique,

19) Names and time constraints may not be modified once their associated object is

placed in the drawing space.

20) Units for time constraints in the PSDL language definition have a defauit value of

milliseconds. The graphic editor does not recognize this feature of the language.

21) The previous design assumed that only one single graphic view of a prototype would

exist when the load existing button was activated.

22) The mechanism for prototype decomposition was not described in the previous

design.

23) A complete prototype description cannot be entered within the graphic editor.

E. MODIFICATIONS TO THE DESIGN AND THE IMPLEMENTATION

The first ten items have been corrected in the design and the implementation. The
eleventh item was partially corrected, the remaining items have been corrected in design
Oty
1) We changed the frame title of the graphic_editr from dataflow diagram editor in the

implementation to CAPS - GRAPHIC EDI in both the design and the

implementation.

2) We added a print screen option to the graphic editor. This was implemented by creat-
ing & new control option button in the system control group panel of the graphic editor
for print design. The print design selection causes & screen dunip to a file, which is then
sent to a printer. This option performed well when the graphic user was displayed on a
window device which was physically connected to a Sun server. The file did not survive
transfer across the network, when the physical window device was connected to a disk-
less workstation, due to the size of the transfer file. Since the functionality of the print
design button is inoperative on diskless workstations, a further modification was made to
determine the physical device that the user is on before displaying the print design but-
ton. If the user is physically located on a diskless workstation then the button is not pro-
vided.

3) We resized the default size of the grapliic editor to better utilize the monitor display.

The graphic editor now utilizes 100 percent of the screen space.

4) We initialized dynamic memory to NULL in graph.c to correct the segmentation vio-
lation. This required systematic debugging to locate the source of the problem. The
location of the segmentation violation was in nodes.p. However, we traced it to graph.c
where raemory was dynamically allocated but not initialized.

5) The tail pixel on inputs, outputs and data-flows was not erased when the rest of the
graphic symbol was erased. This occurred when inverting the pixels on the display from
the last mouse position to the current mouse position for pixels between the tail and the
head of the graphic symbol. This was accomplished with a built in sunview function. To

correct this problem the drawing space is redrawn when a symbol is erased. Since the

45

til pixel is deleted from memory when a symbol is erased, redrawing causes the tail

pixel to disappear.

6) A mouse interface panel was created. This panel explicitly denotes the functions of
the left, middle and right mouse buttons. The mouse interface panel resides as the top
panel of the graphic editor since the designer must know how to interface with the editor
before he can make use of the tool. This reduces the size of the drawing space some-
what, but contributes to the usefulness of the graphic editor significantly. In considera-
tion for maintaining maximum area for the drawing space the editing mode panel was
reduced in size to eliminate unnecessary wasted space. During the design of the mouse
interface panel we also realized that the labels and buttons of the previous design were
not consistent. We corrected this as well. A later modification might be to enable the

expert user to delete this panel in fuvor of a larger drawing space.

7) A message panel for editor error messages and wamings was designed into the
graphic editor to avoid the possibility of overlaying the design with graphic editor mes-

sages. This panel resides immediately above the drawing space.

8) The capability to quit without saving a curmrent session with the graphic editor was
implemented. Previously the designer could not quit the graphic editor without storing
the design, although two independent buttons are used for these functions. The previous
implementation would display a waming message that the graph had not been saved, and
would then ignore the request to quit. The designer could quit without storing by using
the pull down menu of the graphic editor frame. This design feature essentially

encouraged the designer to circumvent the tool. Since it is easily recognized that the

[T S

designer might like to quit without storing his current work, this option was integrated
into the graphic editor. This was accomplished by using the sunview confirm feature
when the quit button is selected and the graph has not been saved. If the designer selects
quit without having saved the graph, then a waming message is displayed and a pop-up
confirmation sequence occurs. If the designer does want to save the graph before quit-
ting, then he may click the right mouse to cancel the quit request. If he did intend to quit

without saving then he may click the left mouse to confirm his request.

9) The operator data components produced by the link statement analyzer were corrected
to append the PSDL keyword END to the NewNode product. In the PSDL grammar all
SPECIFICATION keywords are bracketed with the keyword END.

10) The previous design and implementation included a command line help facility.
Since the graphic editor is an integrated tool within the CAPS environment, and is
invoked from within the user interface and not from the command line, this facility was

deleted.

11) The delete function was evaluated and partially corrected. The first bug identified
was the incorrect use of the C free function for dynamic memory. The free function was
applied to memory which was automatically allocated rather than dynamically allocated.
Kemighan and Ritchie state that "it is a ghastly error to free something not obtained by
calling calloc or malloc" [26]. This was corrected by eliminating the free function calls
within the file graph.c. The second bug related to the inconsistent behavior of the delete
function. It appeared as if all objects which are represented by arrows in the graphic edi-

tor such as inputs, outputs, data-flows and self loops should be able to be deleted by

47

pressing the right mouse button on the tail or the head of the object. But when the right
mouse was pressed on the head of a self loop the associated operator and all of its inputs,
outputs, data flows and self loops were deleted. Investigation revealed that when the
right mouse was pressed, if tiic mouse was located on an input, output, data-flow or self
loop the respective line would be deleted. If the right mouse was pressed and the graphic
editor did not determine that the mouse was positioned on an arrow, then it checked to
see if the right mouse was within an operator. When the right mouse was pressed on the
head of a self loop, and if the head of the self loop was located within an operator, the
graphic editor would never recognize that the mouse was positioned on a arrow so the
delete operations for an operator would be activated. The implementation for drawing
arrows in the drawing space uses variable names which correspond to points within a
Cartesian coordinate system. The algorithm which creates the data structure which
represents an arrow always uses (x1,yl) as the tail and (x2,y2) as the head. The algo-
rithm for checking if the right mouse is on a arrow, only checks if the mouse is posi-
tioned on the head or the tail of an arrow. When a self loop is created (x1,y1) is the t«ii,
but (x2,y2) is not actually the head. The actual Cartesian coordinates of the points for a

self loop are shown in Figure 5-5.

(x1,y2) (x2,y2)

(x1,y1) (x2,y1)

Figure 5-5. Self Loop Locations

48

SUOURTUE VI VPR PO

The head of a self loop is actually the point (x2,y1). The values stored as the head of a
self loop in the current implementation are (x2,y2). Currently a self loop may be deleted
by selecting (x1,y1) or (x2,y2) with the middle mouse button. This causes the incon-
sistencies noted during testing. Since the algorithm does not recognize (x2,y1) as the
head of an arrow, if the arrow intersects an operator, then the operator and all related
objects are deleted (including the self loop). We decided that limiting the. recognition of
an arrow to the end points was a poor design decision. Rather than correct the imple-
mentation to store (x2,yl) as the head of the self loop, we chose to temporarily resolve
this problem by redefining the mouse interface panel to state explicitly that deletion of
self loops is performed only when the mouse is positioned on the tail of a self loop. The
correct way to fix this problem is universal to all objects represented by amrows. The
graphic editor should be able to recognize all points along a line. When any object in
the drawing space is selected for deletion, the object should be highlighted in some
manner. A verification mechanism should also be utilized to avoid inadvertent deletions.
A pop-up window which requires that the designer verify the deletion should used when-

ever a delete operation is requested.

12) The input, cutput and data-flow symbols need to be clipped. The type of symbol is
specified, before the location or end points of the symbols are specified. The syntactic
correctness is checked using the symbol’s related operators. The location of the opera-
tors is known to the graphic editor. The graphic editor should adjust the head of the input
and data-flow symbols to the borders of their respective operators. The tails of the output
and data-flow symbols should be adjusted to the borders of their respective operators.

49

This will grealy reduce the precision required of the designer to create a graphic

representation of the prototype with a neat appearance,

13) The tail then head constraint on the selection of input and output mouse selections
should be removed. Since a draw input or draw output has been selected before the user
specifies the end points, the graphic editor should be able to determine the appropriate
head and tail position, and should permit the designer to select the end points in either

order.

14) The additional capability to resize objecis should be implemented. Currently the
designer must delete then redraw an object which he would like to resize. The current
deletion of operators removes all related textual information and adjacent arrows, which
further compounds this problem. Without a resizing capability, the designers might
eventually leam to always draw their designs on a small scale to ensure that they do not
run out of drawing space. This type of compensation would encourage poor utilization of
the drawing space and the tool. A resizing capability will enhance the friendliness and
usefulness of the graphic editor significantly. The resizing of objects may be imple-
mented by allowing the designer to select the border of an object by pressing down on
the left mouse button, dragging the mouse while the object rubber bands, and when the
object obtains the desired size, releasing the left mouse button to effect the change in size

of the object.

15) The implementation of the additional capability to relocate objects in the drawing
space is required. The lack of the ability to relocate objects wiil have the same negative

impact on a designer as the inability to resize objects. The designer may leam to over

50

compensate thus reducing the effectiveness of the graphic editor. The relocation of
objects may be implemented with the following process. The designer should select the
border of an object to relocate by pressing down on the left mouse button. Then he
should drag the mouse to move the object. When the object has the new desired location

the designer may release the left mouse button to effect the change.

16) The ability to invert daia-flows would be a nice enhancement. This should be imple-
mented by copying the existing end points, rewriting them in reverse order into the per-
manent data structure, and then redrawing the display.

17) The correct translation of keyboard back space input is essential since the output of
the graphic editor is used as input for other tools in the environment. The file nodes.p
must be modified to check for the back space control character, &nd then adjust the char-

acters in the text buffer appropriately.

18) The implementation of name analysis is an essential feature. A data structure should
be created which contains the names assigned to data flows and operators. Before new
names are accepted by the graphic editor, the names should be compared with existing
names. The graphic editor should analyze the object being named and ensure that
conflicts or multiple declarations are not defined. If the new name violates these condi-
tions, then a message should be displayed in the message panel and the designer should

redefine the name.

19) The modification of names and time constraints independently of their associated
operators requires that the graphic editor recognize the boundary of the names and time

constraints associated with an operator when selected with the mouse. Functions should

51

N P D

be provided in the file graph.c which control the modification of these objects whenever

they are selected.

20) Currently a time constraint is required by the graphic editor for all operators. This
requirement should be removed. If the designer does not enter a time constraint then a
default value of zero should be assigned. Currently, units are required for all time con-
straints, Since the PSDL language uses milliseconds as a default value, the function
within the graphic editor which enforces the entry of units, should be modified to allow
the desigunier to omit this information. If the designer does not explicitly enter the units of

time then the default value should be assigned.

21) The previous design decision to have the user interface retrieve the necessary recon-
struction information from the design database and store the information into a file called
graph.pic, and to then have the designer select load existing after the graphic editor
becomes available, separates the retrieval function into two different interfaces. This
function should be entirely controlled by either the user interface or the graphic editor.
Our design modification is to place this function entirely within the graphic editor. This

should occur with the following sequence of operations.
a. The designer selects the load existing button.

b. A pop-up listing is; displayed in the drawing area which contains the names of the
existing designs. These designs should be ordered such that the most recently developed
designs occur in the listing before the other designs. This ordering assumes that designs
to be modified are more likely to be designs which were incompletely reconstructed or

pertain to the most recent development project.

52

¢. The designer should select a design by typing the name with the keyboard into a small
window space ar by pointing at a name with the mouse and pressing a mouse button to
make the selection.

d. The graphic editor makes a copy of the design file with a suffix reserved for backup
fiies.

¢. The design is loaded into the graphic editor.

f. If the designer selects store with this design, then he is queried as to his desires for the
backup copy. He should be able to rename or remove the old copy. Eventually the
design database should perform version control and manage all of the versions of a
prototype.

g. If the designer selects quit without having stored the current version of the design,
then the edited version is removed and the name of the backup copy is restored to its ori-
ginal name.

Consistency of design indicates that the graphic editor should control the naming of all
graphic designs. Naming should occur when the store button is selected. Until the
design database is implemented, the directory /caps/prototypes/ should be used to contain
the prototype designs.

22) The decomposition process of a PSDL prototype design was not previously
described. The existing data structures currently used in the graphic editor should be
modified to add another dimension. This dimension would generate a linked list of
operators to their decompositions. Three new buttons search, decompose and compose

should be added to the system control group panel. The search button interacts with the

53

Database Management System. Tlie implementation of this function should provide the
user with the capability to retrieve both prototype designs and reusable software com-
ponents. This button has been added to the graphic editor layout but its functionality has
not yet been implemented. The details of these operations are further defined in & later
chapter. When the decompose buiton is activated, the user selects an operator in the
current design, a link from the operator in the current data structure is created, and the
drawing space is cleared. The user may now construct the decomposition of the selected
operator. Information related to an operator must be consistent with the decomposition of
that operator. For exumple, if an operator has a defined input, then when the operator is
decomposed that same input must appear as an EXTERNAL input in the decomposition
of the operator. If the designer has defined adjacent inputs, outputs, data streams, time
constraints or any other related information: prior to selecting an operator for decomposi-
tion, this information should be visible to the designer when constructing the decomposi-
tion. The graphic editor must ensure that the information related to an operator is
consistent in both the decomposition and composition of the operator. When the com-
pose button is activated the drawing space is cleared and the design which contains the
parent operator is displayed. The decompose and the compose buttons have been added

to the graphic editor, but their functionalities have not yet been implemented.

23) We believe that a user should be able to describe a PSDL design completely from
within the graphic editor. Better utilization of sunview capabilities within the graphic
editor and enhancements to the current data structures used within the graphic editor sup-
port this modification. The use of pop-up menus and the use of multiple windows can

previde an interface which avoids clutter and information overload. The current set of

54

graphic symbols remains sufficient. Optionai PSDL constructs which relate to an opera-
tor and are not currently supported by the graphic editor can be displayed within a pop-
up menu. Selections made within a pop-up menu can generate dialogue boxes where the
user describes the optional constructs. The dialoguc boxes should be customized to sup-
port effectively cach optional construct. A few examples of these constructs include con-
trol constraints, informal descriptions, and formal descriptions, Mechanisms used within
these dialogue boxes can be question and answer, mini syntax directed editors, or simple
text editors. This information represents an annotation view [27] of the operator. It will
not be visually persistent but will be attached to the operator, The existing data struc-

tures can be expanded to manage these constructs.

The layout of the graphic editor as it is currently implemented, with a simpie proto-
type design, is shown in Figure 5-6. The functional components which comprise the

graphic editor are contained in Appendices C through F.

55

P ara

Figure 5-6. Current Graphic Editor
56

sioqurw py
12

MMV IIVEEIN

(*21]_seny) ® :imrversse3 Iett

(CT) * S3uvw WILITINDEI

Isding Mg Indel maiq o8] jrog Mg myg eieg I ERENFOACICNEE 2 s4iri1e)

D) C=ip) (553559) (553557) (G550 (Siisig seen) [SIBETHIS0 1200w sniiveise

186580 26 1A40] ML) R10F § S0 PO L10F SN B0 6001 (04 § 6 (18] OUL B0 ‘10040 U6 UINIIA Pour)L I0ed BauA $3131NE VoA Indiy
sidefee djwde st 13000 osaen Sipety
0120[0e Iindesl mew 20} 2s118ITL POs Busilren) J0i1pe diwdesl TI3IIT eessy 140

I33VICIINT ITeaM

o T

VI. THE SYNTAX DIRECTED EDITOK

Language-based editors or syntax directed editors are editors which ate tailored to a
specific language. These editors use the grammar, structure and static semantics of a
language to assist a user in writing correct programs. These editors generally enforce
syntactically correct programs by providing program segment templates which contain
legal altematives for the specific language and prohibit illegal constructs. They may also
combine plain text editing with incremental parsing techniques to ensure that only syn-

tactically correct program fragments are entered.

A. LANGUAGE-BASED EDITOR GENERATORS

Porter [11] performed a comparison of two predominant editor generators currently
in use for developing language based editors. These tools were the Comell Synthesizes
Generator and the GANDALF ALOE Generator. Porter stated that the Comell Syn-
thesizer Generator [28,29] was the more appropriate tool for our purposes. The Gandalf
tool provides an environment which permits team development of system. software. It
exceeds the scope of the Comell Synthesizer Generator by providing both programmiing
and system development environments. The desired PSDL editor is designed as 2 tool
within the CAPS environment. CAPS provides its own system development capabilities.
The development of a PSDL editor using the GANDALF tool would underutilize the

GANDALF teul.

57

Porter established the feasibility and recommended the use of the Comell Syn-
thesizer Generator for the development of 2 PSDL editor for CAPS. We decided to fol-
low Porter’s recommendation and did not conduct any further evalustion of editor

generators,

B. THE CORNELL SYNTHESIZER GENERATOR

The Synthesizer Generator creates a Janguage-specific editor from an editor
specification which describes the language. The editor specification defines the abstract
syntax, context-sensitive relationships, display format, concrete input syntsx, and
transformation rules for the editor. These specifications are written by the editor-designer

using the Synthesizer Specification Language (SSL).

The Comell Synthesizer Generator is written in C und runs under UNIX. The central
components of an editor created from the Comell Synthesizer Generator are the editing

kemel and the generator proper.

The editing kemel consists of four subcomponents which are common to all gen-
crated editors. These subcomponents are an attributed-tree module, the SSL-expression
interpreter, the editor module, and the display module. The attributed-tree module con-
tains a set of operations for manipulating attributed trees. An example is the incremental
algorithm for updating a tree's attribute valies after it has been modified. The SSL-
expression intespreter is invoked by the attributed-tree module. This occurs when a new
value of an attribute instance is to be computed and when a transformatioi: has been

applied to an attributed tree. The editor module provides the capabilities for

58

manipulating objects within an editor. These objects are contained in a collection of
buffers. The editor module provides the system commands such as thoae for structural
editing and textual editing. The display module provides the support for video-display
terminals, bit-mapped workstations and mice.

The gencrator proper generates editors from editor specifications. It consists of a
shell program and the SSL translator. The shell program, sgen, coordinates the activities
of the SSL translator with the UNIX utilities, such as lex, yacc and cc, which are
employed during the process of creating an sditor. The SSL translator processes the SSL
source which represents the editor specifications. Four unique subcomponents are created
for any generated editor. The subcomiiponents are the editor’s grammar tables, scanner,
parser, and sequences of byte-codes which are the intemal representation of SSL

expressions.

The SSL reserved words which may not be used by an editor designer for any other

purpose are shown in Figure 6-1.

and as default demand end
exported ext_computers false forall foreign
in inh inherited left list

let local nil nil_attr nonassoc
on optional parse prec readonly
repeated right root sparse store
style syn synthesized transform true
typedef unparse view with

Figure 6-1. SSL Reserved Words

59

C. PREVIOUS DESIGN AND IMPLEMENTATION

Porter generated some partial specifications for a PSDL editor, but the specifications
were completely untested. After reviewing his work, we were unable to perform any
editing with those specifications. We chose to define our own approach to development

and to disregard the previous implementation.

D. DEVELOPMENT OF THE PSDL EDITOR

The modular development of an editor using the Comell Synthesizer Generator con-
sists of editor specifications which may be divided into six major components:

- abstract syntax declarations

- unparsing declerations

- lexical declarations .

- concrete input syntax declarations

- attribute declarations and equations

- templates and transformations
Modular construction permits the abstraction of the requirements of each component,
snhances comprehensibility and incorporates effective extensibility for an editor. Good
engineering practice was also employed by first defining a small subset of the PSDL
language for the initial editor, while familiarizing ourselves with the specifics of the pro-
cess for generating an editor. The purpose and implementation details for the construc-
tion of each module is described using the initial subset of the PSDL grammar shown in

Figure 6-2. Some of the PSDL nonterminals have been eliminated or are treated as ter-

muanals here in our subset. The complete PSDL grammar is contained in Appendix A.

psdl

= (component)
component

= data_type | operatox
data_type

= "type" id type_spec
opexator

= "operator™ id operator_spec
type_spec

= "specification™ {type_decl} “end"
operator_spec

= "specification" {interface} "“end"
intexface

= attribute [regmts_trace]
attribute

= input | output
input

= "input" type decl
output

= “output" type_dacl
reqmta_trace

= "by requirements™ id list

type_decl
= id_list ":" id

id_list ;

- id (", id)
id J

= letter (alphanumeric)
alphanumeric

= letter | digit
letter

- "a, .z | "A,LZR | N "
digit

w "0, 92

Figure 6-2. Original Subset Of PSDL Grammar

The descriptions of the SSL modules embodies lessons leamed during the generation
of the editor that may be applied to the generation of any editor. We decided to make the
initial editor for use on a video terminal rather than a workstation due to the availability

@ .

of local resources. The final version of the editor within CAPS is expected to utilize

graphics with a mouse on a Sun Workstation.

Before writing any SSL specifications we recommend that the editor designer define
an intermediate grammar, There may exist several conditions in the BNF dialect of the
grammar which, if implemented literally, will probably produce an editor which is
cumbersome to the user. The intermediate graramar will not change the meaning of the
original grammar but will provide a more natural transition between the BNF grammar

and the SSL declarations.

Nontermisals that carry no specific semantic meaning should be eliminated. These
nonterminals may exist in the BNF diulect of the grammar to enhance readability and
understandability. When used in the abstract syntax they produce unnecessary editing
steps and depth in the derivation trees. An example of this in our initial PSDL grammar
is the production for component which resolves to a data_type or an operator. We
redefined component in our intermediate grammar to be a “fype" id type_spec or a

“operator " id operator_spec.

BNF dialects and SSL differ in the way that optional occumrences of nonterminals are
treated. A BNF dialect uses a mechanism to state that an instance of a nonterminal is
optional. SSL uses a property declaration for the nonterminal to state that it is optional.
Thus all occurrences of that nonterminal are optional. We recommend that the editor
designer identify nonterminals in the BNF dialect of the grammar which have both
required and optional occurrences. A convention for creating new nonterminals in the

intermediate grammar to differeritiate between optional and required instances of the

62

nonterminals should be established. The new optional nonterminals carry the same
semantic meanings as the original nonterminals, We created new nonterminals for
optional instances and used a convention of prefixing optional_ to the name of the new
nonterminal for optional occurrences, An example of this issue occurs in our original
PSDL subset with the rype_decl production. We created a new nonterminal
optional_type_decl in our intermediate grammar, We also decided to maintain an
expressive regularity by renaming all nonterminals which only had optional occurrences
in the original grammar with the same optional_ prefix.

BNF dialects and SSL also differ in the way that optional instances of sequences of
terminals and nonterminals occur. In SSL a property declaration is used to specify that
all occurrences of a nonterminal are lists, or optional lists. Lists in SSL are treated as
binary trees. An SSL list must have exactly two operators. One operator is a nullary
operator constructing an empty list and the other is a right recursive binary operator
adding & new list element to a given list. A list in SSL must contain at least one element.
A production list = list_item {list_item} would be reflected as a list in SSL. Optional lists
permit an instance of the list which is empty. A production such as list = {list_item)
would be reflected as an optional list in SSL. We recommen ! that the editor designer
identify whether sets in the original grammar are lists or optional lists. We renamed the
optional list nonterminals with the prefix optional_list_. In our original grammar inter-
face is an optional list and was renamed to optional_list_interface in our intermediate
grammar. In our original grammar id_list is an list. Our intermediate grammar for the

PSDL subset is shown in Figure 6-3.

——

padl

= list_component
list_component

=~ "type" id type_spec | "operator" id operatoxr spec
type_spac

= "sgpecification® optional_ type decl "end"
opexator_spec

w "spzcification” optional_list_interface “end"
op! .onal_list_interface

= attribute optional reqmts_trace

attribute

= input | output
input

= "input® type decl
output

= “output" typa_dec)
optional_ rxeqmts_txace

w "by requirements™ id list
type_decl

w id list ":® id
optional_type decl

= id_list ":* id
id_list

= id ("," id)
id

= latter (alphanumeric)
alphanumeric

= letter | digit
letter

- g, .z" | A, Z" | "
digit

bl "0.19-

Figure 6-3. Intermediate PSDL Subset

1. Abstract Syntax Declarations

The abstract syntax is the core of the editor specification. It is defined as a set of
grammar rules. An object in the resultant editor is represented by a derivation trec which

is constructed based on the grammar,

The abstract syntax declarations may easily be defined from the intermediate
grammar, The literals of the grammar are not considered at this stage as they do not
represent parts of a derivation tree. The abstract syntax for the PSDL subset is shown in
Figure 6-4.

Nonterminals with special propertics such as optional, list or optional list are
denoted Ly using the sppropriate property declarations in the abstract syntax. Optional

nonterminals must contain a nullary operator in addition to any other desired operators.

The abstract syntax declarations are a collection of productions. In SSL produc-
tions have the form x0 : op(x! x2 ... xk), where op is an operator name and each xi is a
nonterminal of the grammar. The nonterminal is also referred to as & phylum. The phy-
lum associated with a given nonterminal is the set of derivation trees that can be derived
from it by using operators. These derivation trees are referred to as terms. The operators
identify the production instances in a derivation tree.

The SSL grammar rule acts like a context-free production x0 -> xI x2 ... xk. All
operator names must be unique. The operator of a production distinguishes it from the
other altematives provided by the left hand side phyium. One phylum in the abstract
syntax declarations must be distinguished as the root phylum. All editable objects in the

editor are termas of the root phylum.

Phyla contain a completing term and a placeholder term. The same term may be
both & completing term and a placeholder term. The first operator declared for each phy-
lum is the completing operator. The completing operators construct default representa-

tions for the phylum called the completing term. An instance of the appropriate

xoot padl_components;
list padl_components;
padl_components

: PadlNir()

| Padlbair(component padl_components);
component

¢ NoComponent {)

| Data(ic type_spec)

| Op(id operator_spec);
opexatox_spec

: OpSpec(optional intexface);
type_spec

¢ TypeSpec(optional type_ declaxation);
optional list optional_interface;
optional interface

IntexFaceNil ()

| InterxFacelist (attribute optional_intexface);

attribute

! EmptyAttr()

| Input(input optional_ requirements)

| Output (output optional requirxemsnts);
optional optional requirements;
optional_ requirements

! ReqmtsTraceNone()

| ReqmtsPrompt ()

| RegmtaTrace(id liat);
input

¢ InputTypeDecl (type decl):
output

¢ OutputTypeDecl (type decl);
type_decl

! TypeDecl(id_liat type_name):;
optional optional type_declaration;
optional type declaration

: OptTypeDeclNil()

| OptTypeDecl (id_list type name);
type name

: TypeName (id);
list id list;
id list

¢ IdNil{)

| Ideair(id id_list);
id

: IdNull{()

! Id(IDENTIFIER):

Figure 6-4. Abstract Syntax

A sk b I Al Nt

completing term resides at each unexpanded occurrence of a phylum in a derivation tree.
The completing term of a list phylum differs in that the complering term is the singleton
list constructed by applying the binary operator to the completing term of its left argu-
ment phylum and to the list’s nullary operator. Placeholder terms identify locations
where subterms may be inserted, The relationship of completing teoms and placeholder
terms varies dependent upon the property declarations for a phylum. For ordinaty phyla
and list phyla the same term is both the completing term and the placeholder term. For
optional phyla the completing term is constructed from its first nullary operator. The
placeholder term is constructed from the first operator which is not used to construct the
completing term. For optional Jist phyla the completing term is constructed from the nul-
lary uperator, and the placcholder term is the singleton list constructed by applying the
list's binary operator to the completing term of the list’s left child and to the list’s nullary

term.
2. Unparsing Rules

The next step in constructing an editor is to define the display representation. The
display representation is described by a collection of unparsing rules. The unpansing
rules define the behavior of the editor with respect to the abstract syntax. This module
contains specifications for the display format and for denoting which nodes in the

abstract syntax tree are selectable and which productions of an object are editable.

The SSL form for unparsing rules is phylum : operator [unparsing syntax] where

phylum and operator correspond on a one to one basis with the abstract syntax. The

unpereing syntax includes a selection symbol which corresponds to the left hand side

A, .

phylum and a selection symbol for each node on the right hand side in the order in which
the nodes oceur in the abstract syntax.,

There may be locations in the derivation tree which need not be visible to the user
of our editor. The selection symbol which denotes a node as a resting place in the
derivation tree is a @. We denote nodes that we do not wish to be selectable, which
means they are not resting places, by the * selection symbol. The selection symbol for
the left-hand-side-phylum is separated from the right-hand-side-nodes by a : if we do not
wish an object 10 be editable, or by a ::x if we do intend for the object to be editable. A
node in the tree is an instance of two phylum occurrences. It occurs in the right-hand-
side and in the left-hand-side, If cither occurrence is represented with a @ symbol then
the node represented the phylum will be designated as selectable otherwise it is not
sclectable. This characteristic necessitates the development of another convention. The
editor designer should choose a convention for the insertion of resting places, either in
place for the left-hand-side phylum or the right-hand-side phylum. We chose the left-
hand-side phylum as our convention since the resting places were more easily recognized
and fewer @ symbols were required in the unparsing rules. The trade-off with this
choice is that if the editor-designer desires that a phylum be a selectable in one subtree
and not selectable in another subtree then the unparsing rules must be modified io
describe the right-hand-side occurrence as a resting place and the left-hand-side as not a

resting place. This occurs infrequently in our PSDL language.

The syntactic sugar of the language is interspersed within the unparsing syntax in

the form of tokens. These tokens are enclosed within double quotes. Display

formatting such as newlines, tabs and back tabs may also be included within double

quotes. The SSL, display formatting commands are shown in Figure 6-5.

Formatting
Command

%t
%b
%n
%l
%1
%T

%S(style-name
%S)
%%

Meaning

move the left margin one indentation unit to the right
move the Jeft margin one indentation unit to the left
newline, retum to the current left margin

retum to the current left margin and overprint

move to column one of the same line and overprint
move right (o the next tab stop

move right to column c, where ¢ is a positive integer
optional newline, retumn to the current left margin
same as %0, but either all or no %c in a group are taken
beginning of an unparsing group

end of an unparsing group

same as %1% (

same as %} %b

enter the named style

revert to the previous style

display a %

Figure 6-5. SSL Display Formatting Commands

Another conventidn should te established with regard to the placement of tabs

and newlines. The consideration is whether to place the newlines in the front of the

unparsing rules or at the end of the unparsing rules, and the level at which to place the

tabs and the back tabs. The effect of the formatting commands for tabs and back tabs are

realized upon the next occurrence of a newline. 'We chose to place the newlines at the

front of the unparsing rules, and tabs and back tabs in the parent rules. The unparsing

rules for our PSDL subset are shown in Figure 6-6.

69

VI L |

i S

padl components

T Padlnil

{ Psdlbalxc
component.

: NoComponent

I Op

} Data
id

1 XdNull

| xd
operator_spec

: OpSpec
type_spec

s TypeSpec
opticnal_interface

: InterFaceNil
| InterFacelist

optional_requirxementa
RegmtsTraceNone

| KRegqmtsPrompt
] RegmtsTIzacec

attribute

: EmptyAttr

| Input

| Output
input

: InputTypeDecl
output

: OutputTypedecl

type_decl
¢ TypeDecl

{8:)

(@:7("%a")")
[*:"¥n(componant} ™)
(~:"¥nOPERATOR """}
(“:"¥nTYPE *°") ;

(@::="<identifiex>")
(Q::m") ;

{":*"SnSPECIFICATIONSL " " "{§bAnEND")

-

(*:"$nSPECIFICATIONSE"""$§bAnEND*]

(9:)
(@:°0)Q)

(e:]

(€:"¥n({requiremanta}™)

(@:"SnBY REQUIREMENTSALRA"""%b") ;
[":*fn{intexface)"]

(" :"VnINPUT"~"At*"*§b")

(" :"SnOUTPUT"~=AL"""yb"}
(":"8tAn™""gh") ;

(" SEWn"""4b") ;

| R TS B

optional_ type_declarxation

: OptTypeDecliNil

| OptYypeDecl
type_name

: TypeNane
id_list

: IdNil

| XdPair

(§:"8n{optional type declaration)™)
(e:"n.". . ."} :

(7:°) 2

(Q::m)
(@ee="(', ")}Q) :

Figure 6-6. Unparsing Rules

70

e Al S e fn wm LY

AT A Pl e

FCIVRCS

3. Lexeme Declarations

The next step in the development of an editor is to defiive the lexical rules, The
form of » lexeme declaration is phylum-name : lexeme-name < regular-expression >;
This declaration states that all strings generated by the given regular expression are in
phylum-nane. The regular expression is scparated from the closing sngle beacket by at
least one blank character. The regular expression may contain embedded blank charac-
ters by explicitly escaping the blank with a back slash. The lexeme-name will be used in
the concrete input definitions, The regular expressions permitted in the SSL lexeme
declaraticns are generally the same regulac expressions which are accepted by the UNIX
lexical analyzer generator lex. Figure 6-7 contains guidance for acceptable regular

expressions.

Expression Meaning

c the character ¢

"clc2c3” the string clc2c3

[clc2c3) the character cl,c2 or ¢3

(cl<c2] any of the characters from cl through c2
["clc2c3) any character but cl,c2 andd ¢3

c an ¢ at the beginning of a line
c$ an ¢ at the end of a lisis
e? an optional ¢
c* 0 or more instances of ¢
e+ 1 or more instances of ¢
cle2 an el followed by an e2
elle2 anel orane2
(e) ane
clfe2 an el but only if followed by an ¢2
e(ni n2) nl through n2 occurrences of ¢

Figure 6-7. Regular Expressions

!

|
g

Lexeme declarations form an ordered list. During lexical analysis in an editor,
this order influences the recognition process. When more than one regular expression
matches a string, the longest match is selected, If several rules match with the same
number of characters, then the first declaration which matched in the specification is

selected. The lexeme declarations for our PSDL subset are shown in Figure 6-8,

IDENTIFIER: IdentLex< [a-zA-2)(a-zA-Z_0-9]* >;

Figure 6-8, Lexeme Declarations

4. Attribute Declarations

The next step in the development of an editor is to define the attribute declara-
tions. The attribute declarations define the association between the abstract syntax and
the concrete input syntax. SSL attribute declarations associate an attribute with the name
of a phylum. They also describe the type and the source of the attribute as either syn-
thesized or inherited. The form of an SSL attribute declaration is phylum (source ateri-
bute type;); This file also contains entry declarations which establish the correspondence
between the selections :n the abstract-syntax tree which are to be edited and the entry
points within the input syntax., The form of an SSL entry declaration is p “P.t;. This
example indicates that when a selected component of the program is a member of phy-
lum p, input is to be parsed to determine if it is a member of P. If it is, then attribute ¢
should be inserted in the abstract-syntax tree, and should replace the current selection.
The attribute declarations and their entry declarations for our PSDL subset are shown in

Figure 6-9.

72

Ident {aynthapized id t;);

Id list {syntheaized id_list t;);
id = XIdent.t;

id_list = Id_liat.t;

Figure 6-9. Attribute Declarations

5. Concrete Input Syntax

The concrete input syntax of a language to be used for text editing is defined in
terms of a concre:s input grammar. It comprises the rules which specify the set of syn-
tactically well-formed strings, the structure of parse trees, and attribute equations that

specify the translation of the parse trees into terms of the abstract syntax.

The attribute equations specify how values of synthesized attributes of the left-
hand side nonterminals are computed \n terms of their inherited attributes and
synthesized attributes associated with nonterminals on the right-hand side. They also
determine how inherited attributes of right-hand side nonterminals are constructed from
inherited attributes of the left-hand side nonterminals and from synthesized attributes of

left siblings.

The minimum syntax required fo~ an editor must provide for all language con-
structs which are entered as text via the keyboard. Ultimately, the concrete input syntax
should recognize the entire language to permit the user to read existing objects into a text
file and then edit those objects. The concrete input syntax for our PSDL subset is shown

in Figure 6-10.

73

Ident tim (IDENTIFIER)
{Ident.t = Xd(IDENTIFIER);]):

Id_list :im= (Ident)
{Id list.t = (Xdent.t::IdNil);}
| (XIdent ’,¢ Id list)
(Xd_list$l.t = (Xdent.t::Xd list$2.t););

Figure 6-10. Concrete Input Syntax

The left-hand side phyla name are separated from the right-hand side symbols
with a : := symbol. Single characters may be enclosed in single quotes on the right-
hand side of the parsing declarations, Different occurrences of the same nonterminal are
distinguished by appending a number, such as $1 and $2, which reflects their
occurrence in the rule. The second rule in our syntax specifies that a list of identifiers is
separated by a comma in the concrete syntax and that the lexeme values parsed are con-
catenated to a list (using the predefined concatenation operator ::) whose value is

stored in the synthesized attribute t of the nonterminal 1d list.

6. Templates and Transformations

The next step is to define the templates and transformations. Transformations
may define templates which are inserted whenever the selection is a placeholder or may
<ompute a replacement value dependent upon the former value of the selection. We only
defined template transformations for our first editor. These declarations specify the res-

tructuring of objects when a current selection matches a given patten. The general foom

74

PP OPNROT Wi 4_.__._;‘;_1

e e e e ke e

‘ of a transformation declaration is transform x0 on transformation-name <x0> :
operator(<x!>,..,<xn>); , where transform and on are SSL reserved words, operator is
an operator and a0 through xn are productions in the abstract syntax. The template

transfonnations for our PSDL subset are shown in Figure 6-11.

transform component
on "type"
<component> :
Data(<id>,<type_ spac>),
on “operatox"
<component> :
Op (<id>,<operator_spec>);

transform attribute
on "input®
<attribute> :
Input (<input>,<optional_xequirements>),
on "output®

<attribute> :
Output (<output>,<optional_ requirements>);

trxansform optional_ requirements
on "enter_ requirements"
<optional_requirements> :
RegmtsTrace (<id list>);

trxansform optional_ type declaration
on "“entexr_ declaration®
Xoptional_type declaration> :
OptTypeDecl (<id_list>,<type_named);

Figure 6-11. Template Transformations

E. DESIGN ISSUES OF THE COMPLETE PSDL EDITOR

The PSDL Syntax Directed Editor described here and used in CAPS is a very

simplistic editor with regard to the level of sophistication capable in an editor generated

@ .

from the Cornell Synthesizer. The simplistic design of our PSDL editor was intentional.
We have purposely tumed off features which may normally be included in an editor gen-
erated from the Comell Synthesizer Generator. We have purposely documented only a
very smali subset of the available editor commands. The subset of editor commands pro-
vided in our on-line documentation is sufficient to use the PSDL editor as we intended.
In an environment which contains multiple tools which interact with the user, we believe
that the interfaces must be kept simple and should be as consistent amongst the different
tools as possible. We felt that the trade-off in the complexity of the editor's user inter-
face with the additional capabilities provided by the Comell Synthesizer Generator was

not warranted for our application.

Our editor is consistent with the principle that a user interface should always provide
feedback for any user input. The display always changes in appearance any time the user

enters an editor command or any other keyboard input.

We have updated the PSDL grammar during the design and implementation of the
PSDL editor. There were four changes in the grammar which were not simple factoriza-
tions but that actually changed the meaning of the language. The first change simply
made the grammar more regular. PSDL primary objects such as operators and data types
have two parts: a specification part and an implementation part. The specification con-
struct begins with SPECIFICATION and ends with END. The implementation part
may consist of a psdl implementation or an ada implementation. The psdl implementa-
tion construct begins with IMPLEMENTATION and ends with END. The ada impie-
mentation construct began with IMPLEMENTATION ADA and contained an Ada pro-

gram. An ada implementation did not require an END to bracket the construct. We

76

o

TSRV S S WA

€ o Cssdan,

decided to change the grammar to require that an ada implementation end with an END

to increase the regularity and syntactic consistency of the language.

The second, third and fourth changes to the g'rammar involved a similar issue. The
rules for dwta®low? diugiwmreonisairitusaints and constraint permitted that the smal-
lest correct use of the rules resulted in unsatisfactory conditions. The last three changes
to the rules resulted in required subsets of the original grammar. The rules which relate

to data_flow_diagram and control_constraints are shown in Figure 6-12,

padl implementation
= "implementation® data_flow _diagram [streams] [timers)
fcor’ tol constraints] (informal desc] "“end”
data_flow_diagram
= "graph" {link)
control constraints
= “control constraints® {constraint}

Figure 6-12. Original PSDL Rules

The smallest correct psdl implementation which resulted from these rules is shown in

Figure 6-13.

IMPLEMERTATION
GRAPH
END

Figure 6-13. Smallest PSDL Implementation According To Previcus Grammar

7

i e

»
N TV s B 1t AVRTD S A e N i O,

P T

This yields an empty implementation, We decided that an empty implementation ‘
should not be pennitted. The grammar was changed to require that a psdl implementa-
tion contain at least ane link statement, The change in the grammar is shown with its

corresponding smallest construct is shown in Figure 6-14.

data_flow_diagram
= "graph®" link {link)

IMPLEMENTATION

GRARH

id "." id [":" time] "~->" id
END

Figure 6-14. Updated Psdl Implementation Rule And Its Smallest Construct ‘

The control constraints construct is optional in the psdl implementadion rule. Frevi-

ously when selected, it could consist of keywords only, as shown in Figure 6-15.

IMPLEMENTATION
GRAPH
id "." id [“:Y time] "->" id
CONTROL CONSTRAINTS
END

Figure 6-15. Smallest Control Constraint According To Previous Grammar

" ®

N e o

We changed the PSDL gramiv ar so that if a control constraint construct was selected,
then the construct must contain at least one constraint. The current control constraint

rule and its smallest corresponding result are shown in Figure 6-16.

IMPLEMENTATION
GRAPH
id ".® id (":" time] "~->" id
CONTROL CONSTRAINYS
OPERATOR id
END

Figure 6-16. Current Smallest Ccitrol Constraint In Context

The fourth change in the grammar concemned the triggered option in the constraint
rule. The problem we found with this rule was similar to the problem with the previous
smallest constraint rule. The previous constraint rule and an example of the smallest

construct using the triggered option is shown in Figure 6-17.

constraint
= "operator® id
["triggered" (trigger] (["if" predicate] [reqmts_trace]])
[("period" time (regmts trace]]
("finish within" time [regmts trace]]
{constraint_cptions}

CONTROL CONSTRAINTS
OPERATOR id
TRIGGERED

Figure 6-17. Previous Triggered Option

79

We changed the triggered option so that if it was selected it requires either a trigger
or an optional trigger followed by a required "if* predicate. The current constraint rule

with the smallest possitle triggered options are shown in Figure 6-18.

constraint
= "gperator" id
{*triggexed" (trigger | (triggex] "if" predicate) (zeqmts_trxaca]]
("period" time (reqmts_trace})
("£inish within" time [xeqmts_trace)}
{constraint_options)

CONTROL CONSTRAINTS
OPERATCR id
TRIGGERED
BY ALL a,b

CONTROL CONSTRAINTS
OPERATOR id
TRIGGERED
Ira=20

Figure 6-18. Current Triggered Option

The complete PSDL Grammar shown in Appendix A is the updated grammar which

reflects the changes we have described. The implementation of our PSDL editor is con-

tained in Appendices G through L.

F. INTEGRATION
The files which comprise the functional components of the PSDL editor and related
documentation files reside mostly in the directory /n/suns2fwork/ceps/syntax_editor.

These components are:

80

arandat. L

pev executable terminal psdi editor
pew executable sunview psdl editor
psdl.as.ssl abstract syntax for psdl editor
psdl.ad.ssl atribuk~ definitions for psdl editor
psdiciesl concrete input for psdl editor
psdilex.ssl lexical file for psdl editor
psdlttssl template transfonnations for padl editor
psdl.up.ssl unparsing rules for psdl editor
Makefile shell script te generate an executable PSDL editor
from the psdl.*.ssl specifications.

An additional file which initializes the syntax directed editor is:
/n/suns2/work/caps/.syn_profile

The on-line manual page instructions for pev is located at:
Mn/suns2/usr/man/manl/pe.l

The Comell Synthesizer Generator is located at:

[n/suns2/usr/suns2/local/syn
When the syntax directed editor is required the user interface creates a new process
which executes the PSDL editor concurrently with the user interface and any other poten-
tially active processes. When the designer saves the PSDL prototype from within the
editor it is initially saved in the caps directory. The user interface directory currently

simulates the design database and the software database.

G. USING THE PSDL EDITOR

When a user selects the syntax directed editor from within the CAPS construction
menu, he is given the option to view the on-line user's manual. If instructions are
requested, then the following description is provided using the UNIX man facility. These

instructions may also be accessed outside of CAPS by executing man pe.

81

NAME
pe - PSDL syntax directed editor

SYNOPSIS
pe

DESCRIPTION
pe is a syntax directed editer for the prototype system
deseription language (PSDL), This editor was designed to be

used within the Computer Aided Prototyping System (CAPS).

The editor provides a simple, mostly regular user interface
which guides the user painlessly through the structure of a
correct PSDL program,

There are 3 primary modes of interaction with the editor.
Each mode is visually distinctive,

1. Required Keyboard Input is denoted by a token contained
in angle brackets, such as <identifier>,

2, Required Construct Choices arz contained within square
brackets, such as [implementation]. When a construct choice
is required, the user selects an altemnative by pressing the

tab key followed by typing the altomative or typing an
unambiguous prefix for the altemative,

3. Optional Construct Choices ere contained within braces,
such as {description}. The usermay select an optional
construct in the exact same manner as a required choice. The
user may pass-over sn optional construct by pressing the
retum key.

STRUCTURE TRAVERSAL
The cumrent position within the structuce of a PSDL program
may be changed by the following:
“N - next required construct,
“M or retum - next construct, required or opticnal.

“P - previous required construct,

“H or backspace - previous construct, required or optional.

82

b,

$iatsn.

KEYBOARD INPUT

The current position while entering a patticular text item
via keyboard input may be changed by the following:

DEL - Delete previous character.
"D - Delete current character.
“F - Move the cursor one character to the right.

*B - Move the cursor one character to the left.

SAVING THE PROTOTYPE

Once the prototype description has been entered the file may
be saved with the following method:

*X"W - a forms display appears at the bottom of the screen.

The cursor is positioned at file-name. Enter the name

psdl.text,

Press the tsb key. The cursor is positioned at file-

type. Enter the type text.

Press the tab key again, and enter ESC s to execute the

command.

The file has been saved and the forms display is cleared

from the screen.
EXITING THE EDITOR

The editor is exited by typing “C.

AUTHOR
Laura J. White

FILES

/caps/.syn_profile
Jcaps/syntax_editor/pev
/caps/syntax_editor/pew
[caps/syntax_editor/psdl.as.ssl
[caps/syntax_editor/psdi.al.ssl
[caps/syntax_editor/psdl.ci.ssi
[caps/syntax_editor/psdl.lex.ssl

default parameteis for the psdl editor
terminal psdl editor

sunview padl editor

abstract syntax for psdl editor
attrit-ute detinitions for padl editor
concrate input for psdl editor

lexicat file for pad! editor

3

Jeaps/syntax_cditor/psdl.e.ssl template transformations for psdl editor
[feaps/syntax_eilitor/psdlup.ssi unparsing rules for psdt editor

SEE ALSO
White, L. J., The Developmient of a Rapid Prototyping Environment,
Mauaster's Thesis, Naval Posigraduate School, Monterey, Califomia,
December 1989,
BUGS
The text part of the PSDL grammar has not been implemented.
Identificr is currently used in place of text,
Some of the constructs remain at the current location,
instead of advaneing forward after a selection is made, The
visibility behavior of optional construsts within some con-
structs s still "mystedous” in s5ome instances. This must
be camree.'d before a sunview editor implementation will be
usest,

Name analysis and type checking is not performed in the
current version of pe.

A sample editing session for the construction of & simple prototype is described
within the rest of this section. We will show the contents of the video screen as the edit-
ing session progmsses. Whenever a user presses a tab the command input prompt
appears at the top of the screen. The middle of the screen containg the program. The
current position in the abstract syntax tree is displayed on the bottom line to the left. If
coinmund mode options are available, they appeer to the right of the Positioned at
dispiay. An option may be selecied by entering an unambiyuous prefix at the prompt or
passed over by pressing the retumn key. Figure 6-19 containg the contents of the video

screen orice the syntax directed editor is started and initialized.

84

{remponent]

Zositionsd at psdl components type operator

Figure 6-19, Sample Editing Session

We pressed the tab key to obtain the editor’s command prompt. The command

promx appears at the top of the display as shown in Figure 6-20,

COMMAND ¢

[component]

Poaitioned at padl components type operator

Figure 6-20. Sample Editing Session

85

At this point, we entered the unambiguous prefix *o’ for an operator component. The

convmand prompt disappears and the template for an operator comporent is displayed as

shown in Figure 6-21,

OPERATOR <idenlifier>
SPECIFXCATION

ERD

{eperatoxr implementazion)

Poaitioned at id

Figize 6-21. Sample Editing Session

We then entered the identifizs name for the operator as shown in Figure 6-22. After
the identifier name is entered, the placeholder for an optional interface construct appears.

The choices for an optional interface construct are displayed on the bottom of the screen.

OPERATOR cperator X
SPECIFXCALION
{interfnce}
A1)
{opexator implementation]

Positioned at optional_interface input output states generic
exceptions timing info

Figure 6-22. Fample Editing Session

86

v
T 28 T8 L TP VR O

£

A

We now chose to describe an input so we pressed the tab key and entered the unam-
biguous prefix 'i'. The display was updated with the input construct as shown in Figure
6'23-

OPERATOR opexator_ 1
SPECIFICATION
INPUT
<identifier> : <ddentifier>
END
(operator implementation]

Positioned at id_list

Figure 6-23. Sample Editing Session

After we entered the identifier name of an input and its type as shown in Figure 6-24,

the optional placeholder for a generic actual parameter is displayed.

OPERATOR operator 1
SPECIFICATION
INPUT
x ! integexr {generic actual parameters)
{xequixements)
END
(operator implementation)

Positioned at optional_ generic_actuals enter_generic_actual paramsters

Figure 6-24, Sample Editing Session

87

At this time we did not wish to specify any generic parameters so we pressed the ‘
retum key to pass over this option. An optional placeholder for more_type_decls

appears. We do not wish to specify any more inputs for our operatur, nor any require-

ments for our input so we pressed the retum key two more times. PSDL allows zero or

more interface constructs so the interface option appears again as shown in Figure 6-25.

OPERATOR opexator 1l
SPECIFICATION
INPUT
x : integes |
{interface)
END
[operator implementation)

Positioned at optional_interface input output states generic :

exceptions timing_info

Figure 6-25. Sample Editing Session

We choose to enter timing information for our operator so we press the tab key, enter
an unambiguous prefix 't’ and press retum. The placeholders for the optional timing con-

structs appear, and we are positioned at the first choice as shown in Figure 6-26.

: ®

OPERATOR operxator 1l
SPECIFICATION
INPUT
x : integer
(et}
(mep)
{mrt)
{requirements)
END
(operator implementation]

Positioned at optional met enter MET

Figure 6-26, Sample Editing Session

We chose to enter a MET so we pressed the tab key, entered an ‘e’ at the command
prompt and pressed retumn. The MET construct replaces the optional placeholder and we

are positic integer as shown in Figure 6-27.

OPERATOR operator_ 1
SPECIFICATICON
INPUT

x ¢ integer
MAXIMUM EXECUTION TIME <inleger>
(mcp)
{raxt)
{xequirements)

END

(operator implementation]

Positioned at integer

Figure 6-27. Sample Editing Session

89

et ke iaT R A dmay e

We entered a value for the time constraint and pressed retum. The optional unit ‘

placeholder appzared as shown in Figure 6-28.

OPERATOR opaxator 1l
SPECIFICATION
INPUT

x : integer
MAXIMUM ISXECUTION TIME 10 (wnits)
{mcp)
(met}
{xequirxements)

END

(operator implementation]

Positioned at optional unit milliseconds seconds minutas hours

Figure 6-28. Sample Editing Session ‘

We selected milliseconds as our units by pressing the tab key then entering the
unambiguous prefix 'mil’. After that we chose not to enter any more timing information
or any requirements so we pressed retum until we were given the opportunity to enter
another interface construct. We chose not to enter any more of these so we pressed the
retum key again. We are now positioned at an optional keywords construct as shown in

Figure 6-29.

: ®

OPERATOR operator_l
SPECIFICATION
INPUT
% : integax
MAXIMUM EXECUTION TIME 10 MS
{keywords)
END
{operator implementation]

Positioned at optional keywords entex_keywords

Figure 6-29. Sample Editing Session

We chose not to eater any keywords so we pressed the retum key. An optional

description placeholder appeared which we passed over. After that, an optional axioms

placeholder appeared which we also pessed over. We were then positioned at an opera-

tor implementation as shown in Figure 6-39.

OPERATOR operator_1
SPECIFICATION
INPUT
x : integerx
MAXIMUM EXECUTION TIME 10 MS
END
(operator implementation]

Positioned at operator_ impl padl_implementation

Figure 6-30. Sample Editing Session

ada_implementation

) |

We sclected a psdl implementation and the appropriate template for the implementa- .

tion appeared as shown in Figure 6-31.

OPERATOR operator 1l
SPECIFICATION
INPUT
x ! integer
MAXIMUM EXECUTXON TIME 10 MS
END
IMPLEMENTATION
GRAPH
<identifier> . <identifier>-><idaentifiex>
{data stream)
{timex)
{control constraints)
{deacxiption)
END

Positioned at id

Figure 6-31. Sample Editing Session ‘

At this point we could continue to describe the implementation of our operator in the

same manner as we did with the specification part, but we chose to exit the editor.

The PSDL editor uses a very small subset of the capabilities provided for an editor
using the Comell Synthesizer Generator. Simplicity and ease was a primary goal for our
editor. This goal caused us to intentionally design our editor so that a very small subset

of traversal commands would be required to use the editor effectively.

: °

SONE TNY S SR NN T I+ U S

H. FUTURE WORK

The following jtems were either not completed in the initial draft of the editor due to

time constraints or were identified as a result of testing,
1) The text rule in the PSDL grammar still requires implementation.

2) The concrete input syntax should be expanded so that a complete PSDL program may
be parsed. An existing file can only be read into the syntax directed editor if concrete

input syntax has been specified for the complete grammar.

3) Name analysis and type checking still require implementation.

4) The video version of the PSDL editor highlights the locator and the placeholder, The
highlighted locator is a feature provided by the Comell Synthesizer Generator. This

feature is inconsistent with the editor we designed and confuses the user. The locator

should not be visibly displayed.

5) The inconsistencies with placeholders must be corrected to provide & useful editor
which provides a Sun version of the editor which utilizes the mouse, pop-up windows
and scrolling windows. Once these inconsister>ies are eliminated, the editor designer
need only recompile the editor specifications with a SUN option flag or a X option flag in
the Makefile to provide a graphic interface.

6) The current version of the editor has been integrated into CAPS in a very simple
manner. More sophistication in terms of its interaction with the design database,
software base and the graphic editor is necessary to meet the requirements of the current

design.

93

¢
etk g

VII. THE SOFTWARE DATABASE SYSTEM

The Software Database System consists of the following tools:

- the Design Database
- the Software Base
- the Software Design Management System

This system provides for the utilization of reusable prototype designs and reusable

software components during the rapid prototyping process. These tools have not yet

been integrated into CAPS. This is an important area which requires follow-on design

and implementation. This chapter is included here for completeness in describing the

development of our envirenment.

A survey of existing database management methodologies and systems has been

conducted to determine the primary features required to support our software database

system, Feasability studies have also been conducted to refine the requirements and

interaction within CAPS using one selected database management system.

A. REUSABILITY

The key motivation for our software database system is reuse. The benefits and

advantages of reusability include:
- improved software quality and maintenance
- increased programmer productivity and efficiency

- faster software development
- lower development costs

94

R U PR ORI Pv)

‘ Galik {13) provides us with a brief synopsis of the following areas of research
regarding software reusability:
- reusability and abstraction
- Ada and reusability
- the Ada software repository
- object-oriented programming and reusability
- a keyword based retricval system

- areuJable software library
- classification and retrieval

Galik found that researchers gencrally agreed that a greater use of abstraction
resulted in greater reusability, Pamas [30] notes that information hiding and abstraction
generally produces software that is well-defined and well-documented, which tends

towards reusability.

Reusability was a primacy concem in the design of the Ada programming langusge,

which supports both abstraction and information hiding. Ada separates the interface

‘ specification of a program unit from its implementation. These specifications determine
how program units may be reused. Both the specification and the implementation parts

may be reused. Ada provides a package subprogram which strongly supports the
development of abstract data types. A key feature of Ada is tire generic unit which is the

primary mechanism providud in the language for building reusable software components.

The Ada Software Repository {31] is a public-domain collection of Ada programs
and information. The software components are categorized by their high level applica-
tions. A programmer must scan an index, then browse each of the potential candidates

for its <uitability. This can be a very time-consuming process.

Johnson and Foote [32] state that ebject-oriented pregramming promotes software
reuse. They state that class definitions provide modularity and information hiding which
supports reuse, Class inheritance supports reuse by permitting classes to be modified 10

form subclasses.

Matsumoto [33) desrrves an object-oriented retrieval system being developed which
is a simple keyword t 1 system. A synonym library provides a standard nonmalized

keyword for retrieval batsd on user input.

A Reusable Software Library (RSL) has been developed at Intermetrics, Inc. The
RSL {34] is comprised of the RSL database and four subsystems which are:

- a library management subsystem

- & User query subsystem

- a software componenent retrieval and evaluation subsystem
- a software computer-aided design subsystem

This library classifies components by a set of attributes. Retrieval is an interactive
process which identifies components which perform a desired function. The user assigns
relative importance to the attributes of the components and the system evaluates and rates

components based on the user’s needs.

Pricto-Diaz and Freeman [35)] state that the proper classification of reusable software
components is the central issue in making reusability an attractive approach to software
development. They propose an integrated classification scheme that is embedded within
the retrieval system. An evaluation mechanism is provided to help users discriminate
between similar components in the software base and to allow users to select components
which will require minimal modifications. Their algorithm is shown in Figure 7-1. This

algorithm provides the basis for our design in retrieving reusable components in CAPS.

96

begin
aeaxch libraxy
if identical match then
terminate
else
collect aimilar componanta
for each componenet com
compute degree of match
end
rank and select best
modify component
endif
end

Figure 7-1. Code Reuse Process

The classification scheme proposed by Pricto-Diaz utilizes a description of software
components with a sextuple containing attributes which capture the functional charac-

teristics of the component.

B. REQUIREMENTS

The requirements for our software database system were defined to provide the fol-

lowing capabilitics:

to store PSDL designs and software components

to retrieve designs and software components for editing

to retrieve designs and software components for review

to delete designs and software components

the CAPS user interface should interact with the software

database system in such a way that the software management system
is transparant to the protoype designer.

C. SURVEY OF PATABASE MANAGEMENT TECHNOLOGIES

Relational, Hierachical, Network and Object-Oriented databrse management systems
were evaluated by Galik, He found that the first three did not support efficiency or pro-
ductivity due to the following characteristics:

- fixed set of structures and operations

- limitations of i fixed set of predefined types

- redundancy of duta

- lack of abstraction capabilities
- schema not easily medifiable

The object-oriented database munagement systeras attempt to provide facilities
which pennit the definition of any structure or operation rather than a fixed set. Proper-
ties of an object-orienied database management system include:

- abstraction

- extensibility

- persistency
- active data

The object-oriented approach was selected as the most suitable technology for the
implementation of our software database system. Within this type of system an object is
considered as a description of an entity in some application demain. It may be a simple
atomic representation or a composite structuze. An object has a unique identifier and a
set of operations which are defined for that object. Objects which are similar gre grouped
into classes. A class is also considered as an object. Class hierarchy and inheritance of
properties penmits the definition of subclasses which may inherit all properties of the

class but may have additional local properties.

Vbase, a product of Ontologic Inc. was selected for CAPS. Vbase runs in the Unix

environment on Sun workstations. The Vbase system consists of the following

98

‘ components:

= the Vbase Database of persistent ohjects

- the Type Definition Language (TDL) provides the data model or
conceptual schema for applications

- aCObject Processor which is the Vbase data manipulation language

- an Integrated Tool Set (ITS)

- an Object SQL which is the query facility for the retrival of objects

The process of defining a typical daiabase design includes:
- Jefine the objects

- define the properties of the objects

- define frequent operations performed on objects

- describe the objects and their properties in TDL

- compile and debug the TDL definitions

- develop COP routines which implement the defined operations
- compile and debug the COP programs

Galik and Douglas successfully implemented Vbase systems for the storage and
retrieval of objects in the software base and the design database.

D. FUTURE INTEGRATION

We currently divide the software design management system into two COP com-
ponents, one for the software base and one for the design database. The purpose of the
design database and the interaction between the designer and the design database requires
further refinement. This process has not been extended beyoind the description provided
by Douglas. We have extended and refined the design for the integration of the software

database system from that previously described by Galik.

The software design management systein for Ada components and the Vbase data-
base of reusable Ada software components should reside in the directory

Jcaps/software_base. The software design management system for PSDL prototype

99

specifications and the Vbase database of reusable prototype designs should reside in the
dircctory feaps/design_database. The implementation defined filenames used in the
feasibility studies, are suitable for the integration which we have currently defined. These
files should exist as temporary data components with lifetimes based on their applicabil-
ity.

The input file for the software base retrieval is currently a PSDL specification part
and the output is an Ada component. The input file for a design database retrieval
currently contains the desired properties of a PSDL description and the output is a com-
plete PSDL description, We will describe the interaction of the software design manage-

ment §ystem in the context of constructing a prototype from within the graphic editor.

When a designer selects the graphic editor from the constructicn menu in the user
interface, both the user interface process and the graphic editor process remain active,
The designer may describe a prototype using a single operator. If the designer wishes to
determine if a reusable Ada component already exists in the database for the operator just
defined, then he selects the search button in the graphic editor. The search function
should call the store function which will cause a file NewNode.0! to be created which is a
PSDL specification for the operator. The search function should make a copy of the
PSDL specification into the file PSDL_SPECS. The search function should then execute
the COP program which represents the database management system for the software
base. If a match is not found in the softwire base, then the search function should
remove the temporary file PSDL_SPECS and cause a message to be displayed in the mes-
sage panel which states that a match was not found. If a match is found, then that reus-

able component now resides in the file SB_OUT and the search function should open a

100

popup window which overlays the top portion of the graphic editor. This window should
not averlay the message panel or the drawing space. If a single match was found, then a
statement which reflects that case is displayed and the designer is given an option to
browse the component, edit the component, save the component or to quit the search pro-
cess. If the designer chooses to browse the component, then the command more
SB_OUT is automatically executed within the popup window. If the designer chooses to
edit the component, then ideally an Ada syntax directed editor should automatically be
executed on the file SB_OUT within the popup window. If the designer chooses to save
the component then the modified component should be stored so that the designer may
choose to discard it or add it to the software base during the quit process of the user inter-
face. The component should also be appended to the file SB_PACKAGE which will be
referenced by the translator during the execute process. If the designer chooses to quit
the search process, then the files PSDL_SPEC and SB_OUT are removed and the pop-up

window is closed.

The designer continues the construction and search processes until a complete PSDL

description is represented by a tree which contains Ada components at all of its leaves.

101

VIII. THE TRANSLATOR

A. PREVIOUS DESIGN

The purpose of the translator is to produce an Ada translation of a PSDL prototype
description. The transtator performs lexical analysis of the intemal textual representation
of a PSDL system prototype, parses the prototype description and constructs an abstract
syntax tree, and then cvaluates the attributes of the tree to provide an Ada representation

which utilizes PSDL abstract data types.

An Ada translation is a template with five major sections derived from the PSDL
input program:

- exception declarations

- atomic operator driver headers

- atomic subprograms

- PSDL operator specification packages
- PSDL atomic operator driver subprograms

The exception declarations define the PSDL_EXCEPTION data type and al(of the
PSDL exceptions which may be raised in a PSDL program. The atomic operator driver
headers are the interfaces for the subprogram names which will be called by the static
and dynamic schedules. The atomic subprograms section contains all of the atomic level
Ada code drawn from the reusable software base or entered by the designer during the
construction of the prototype. The PSDL operator specification part contains Ada pack-
age specifications for all of the composite PSDL. operator specifications. The PSDL

atomic operator drivers are Ada subprograms which execute the atomic subprograms in

102

NP I RV VO

tenins of the PSDL control constraints specificd for each operator, The Ada package tem-

plate is shown in Figure 8-1 [14),

package TL is

excpl, excp2,..., axcpN : exception;

type PSDL_EXCEPTION is (psdl_excpl, psdl_excp2,..., psdl_excpN;

procedure atomic_dciverl;
proceduxe atomic_driver2;

proceduxe atomlc_driverN;

end TL;

with PSDL_SYSTEM;
use PSDL_SYSTEM;

package body TL 1s

atomic procedures drawn f£rom the software base

PSDL operator specification packages

PSDL atomic operator driver procedures

end TL;

Figure 8-1. TL Package Template

103

The PSDL abstract data types implemented for the translator are:
- data streams
- state variables

- timers
- exceptions

There are two kinds of data streams in PSDL: sampled streams and data flow streams, A
sampled strewm is a data stream which has a persistent data value until it is overwritten
with another value. When a value is read from a sampled stream, the value remains on
the sampled stream. A data flow stream is a data stream which may only be written if the
stcean is empty and can only be read when a value exists on the data flow stream. Read-
ing the value of the data flow stream consumes the value. Data streams have two defined
error conditions, BUFFER_UNDERFLOW and BUFFER_OVERFLOW. The first error
occurs if an attempt is made to write onto a data flow stream which has a value. The
second error occurs if an attempt is made to read an uninitialized sampled stream or an
empty data flow stream. The four different PSDL constructs which declare data streams
are:

- input attribute

- output attribute

- states attribute
- streams

State variables are data streamns which are automatically initialized.

A timer is a built-in data type which behaves as a simple digital stopwatch used to
measure elapsed times. The operations available on timers include:

- start
- stop
- read
- reset

- °

PRI S O RN

A timer may be represented by a state machine which has three states as shown in Figure

8-2 [14].
RESET START STOP
READ
STOP
RUNNING +(STOPPED

INITIAL >(
STATE

STATE | START STATE

RESET

.

Figure 8-2. Timer State Machine

The read operation does not cause any change of state. A timer may be read at any
time regardless of the current state. The value retumed when reading a timer is always
the amount of time that a timer has spent in the ru., -.ug state since the last transition

from the initial state.

PSDL exceptions are special data types which may be written to any data stream

without regard for the data stream's normal data type.

105

]

B. PREVIOUS IMPLEMENTATION

The translator is comprised of two main modules: the Kodiyak translator

specification and the Ada package which imolements the PSDL abstract data types.

The translator specification was implemented using the Kodiyak translator generator.
Kodiyak is a UNIX based tool which was built on top of LEX and YACC. A Kodiyak
program has three distinct pants, The first part provides the Jexical rules for the source
language. The second part provides the declarations for the attributes in the abstract syn-
tax. The third part provides the attribute equations which are used to determine the
values of the attributes in the abstract syntax tree. Four passes of the abstract syntax tree

arc performed. A pass is defined us traversal from top to bottom or from bottom to top.

The first pass is a depth-first traversal of the tree from the root. Pass one collects the
following information for each node in the tree:
- all operator niames and their parent names

- all data stream names and whether they are sampled or data flow streams
- all exceptions declared in the program

The second pass traverses the tree from the leaves back to the root. The information
determined for each node during pass one is synthesized up to the root. This information
is collected in the Kodiyak data structure for a map. The global map contains the contex-

tual data of the PSDL program.

The third pass routes the global map created in pass two back down the tree to start
the translation process. Translation occurs at each node in the tree. The translations are

to strings of Ada code. The leaves of the tree inherit the Ada translations.

106

bl dd

SEASRY . 1l

PR TSR IR NPT P

The fourth pass collects the Ada translations from the leaves of the tree and con-
structs composition groups of translated Ada code. When the fourth pass reaches the root

of the tree, then all the translation information is stored in the root.

C. MODIFICATIONS

We modified the design described by Altizer to improve the efficiency of the transla-
tion and compilation processes. This design modification has nat been implemented at
this time, The user interface was to insert the actual source code for reusable com-
ponents which were used in the construction process into the Ada translation. It has
since been realized that this should not be necessary. The reusable components shiculd
have source views and executable views. The designer may use the source views during
the construction phase but then the executable views should be formed into a package
which will be linked with the translator when the final executable prototype is crested.
The package of reusable components should have a unit name, such as SB_PACKAGE,
and the translator must contain an Ada WITH SB_PACKAGE statement. This means
that generic reusable components are instantiated and compiled when selected during the

construction phase.

We also modified the implementation of the translator to require and recognize the
END statement which brackets the PSDL IMPLEMENTATION ADA statement. This
was necessary due to the design modification of the PSDL language which we described

in chapter six.

107

.

D. INTEGRATION

The components whicli comprise the translator are contained in the directory
[eapshransiator. These files are:

translator.k kodiyak translator specifications
psdl_system.aa Ada implementation of PSDL abstract data types

The data components which are used as input to the translator and the output produced
by the translator are stored in the directory /caps/prototypes. These files are:

psdlxt input
tla output

The Kodiyak Compiler resides in the subdirectory Kodiyak. An exccutabie translator
may be generated with ke translator.k in the subdirectory. The executable transtator will
have the file rame franslator. The exccutable translator must be moved to the pacent
directory.
The on-line manual page for Kodiyak is located at:
[n/suns2/usr/suns2/man/manl/kodiyak.]
The translator specifications and the Ada implementation of the PSDL data types arz

contained in Appendices M and N.

108

IX. THE STATIC SCHEDULER

A. PREVIOUS DESIGN

The purpose of the static scheduler is to schedule the PSDL operators in a prototype
description so that the time constraints are satisfied during execution. If a feasible
schedule exists, then the static scheduler creates an Ada program which controls the exe-
cution of these operators, A data flow diagram for the static scheduler is shown in Figure
9-1.

Figure 9-1. Static Scheduler

o 109

The Preprocessor reads an intemal textual PSDL file and outputs a file which con-
taing a list of all composite and atomic operators with their relevant characteristics such

as their timing eonstrnints and link information,

The Decomposer reads the output of the preprocessor and creates a file which only

eontaing the atomic operators and their relevant characteristics.

The File_Processor reads the file of atomic operators and creates a graph structure
which represents all of the atomic operators with critical timing constraints. It also

creates a file which lists the atomic operators without critical timing constraints.

The Topological_Sorter uses the graph structure created by the File_Prccessor to
build and output a precedence relationship that specifies which operators must complete
their execution before other operators may start executing. This precedence relationship

is always determined but is only used by some of the scheduling algorithms.

The Hamonic_Block_Builder calculates the periodic equivalents of the sporadic
operators which have no defined periods. Then it checks if a harmonic block can be
found for a single processor. If a harmonic block is found then it calculates and outputs a

harmonic block length.

The Operators_Scheduler uses the graph structure, the precedence list and the har-
monic block length to determine if a feasible schedule exists. If a schedule is feasible,

one of six scheduling algorithms may be used to build a schedule.

The Exception_Handler manages the exceptions which pertain to critical operators

scheduled hy the static scheduler.

110

NI

The static scheduler produces two outputs. One output is an Adz program which
contains a schedule for all of the operators in & software system prosuype with critical
timing constraints, The other output is the file which contains the names of the stomic

operators in the prototype which da not have any critical timing constraints.

B. IMPLEMENTATION

The static scheduler has been described and incrementally implemented by Marlowe
{15) and Kilic [16]. The static scheduler preprocessor was implemented with Kodiyak
specifications. The details of the Kodiyak Compiler were described in the peevious
chapter. The output of the preprocessor will be processed to produce an output which
only contains atomic operators. An example of the atomic operstors and their
corresponding graph structure which would be created by the file processor are shown in
Figure 9-2. There are currently three of six scheduling algorithms implemented in the
static scheduler. The three algorithins which have been implemented are :

« the harmonic block with precedence constraints scheduling algorithm

- the carliest start scheduling algorithm
- the earliest deadline scheduling algorithm

The three scheduling algorithms which remain to be implemented are;

- the fixed priorities scheduling algorithm

- the minimize maximum tardiness with carly start times scheduling algorithm

- the rate-monotonic priority assignment scheduling algorithm
These algorithms are explained in detail by Kilic. He implemented the static scheduler
as a stand-alone tool which required modifications when integrated into CAPS. The pri-

mary capabilities of the two versions remain the same.

111

ATOMIC LINK
or_1 a
MET op_1
10 0
PERIOD op_2
200 LINK
ATOMIC b
op_2 ¢
HET 0

10 op_z
PERIOD LINK
200 d
ATOMIC e_3
op_3 0
MET oP_i
15 LINK
PEF1OD c
200 oy 2
ATOMIC 0
or_4 op_s
MET

15

PERIOD

200

Figure 9-2. Decomposer Output And Graph Structure

C. MODIFICATIONS

The input to the static scheduler's preprocessor is a PSDL prototype description.
The Kodiyak specifications for the preprocessor were modified to reflect the change in
the PSDL grammar described in chapter six, An END statement is required to bracket an

IMPLEMENTATION ADA statement.

The Ada implementations were modified to better serve the purposes of an integrated
tool within CAPS. An algorithm selection menu and several of the notification messages

were removed. The current design of the static scheduler in CAPS which interacts with a

112

designer applies the different scheduling algorithms in an implementation defined ordet

until a solution is found or until all algorithms have failed to produce a schedule.

During the integration and testing of the static scheduler three major areas were
identified for future modifications. The first is to develop some selection mechanism
which matches the prototype design to an optimal scheduling algorithm. The selection of
an algorithm will still remain transparent to the designer, but should become more
efficient if the order of the algorithms are selected more intelligently. The second is that
the decomposer module still remains to be implemented. Another area of future work
which was originally identified by Marlowe is to define an algorithm and implementation

which determines a hammonic block fength for multiple processors.

D. INTEGRATION

The components which comprise the static scheduler are contained in the directory

[caps/static_scheduler. These files are:

decomposer_b.a - validates and decomposes output of preprocessor

decomposer_s.a - validates and decomposes output of preprocessor

driver.a - interface for stand-alone static scheduler

¢_handler_b.a - exception routines used by driver

¢_handler_s.a - exception routines used by driver

files.a - global types and declarations for all ss programs
_b.a - file processor

fp_s.a - file processor

graphs_b.a - generic type graph structure

graphs_s.a - generic type graph structure

hbb_b.a - harmonic block builder

hbb_s.a - harmonic block builder

ke - script to compile static scheduler preprocess pre_ss.k

pre_ss - executable preprocessor

pre_ss.k - kodiyak specifications for preprocessor

scheduler_b.a - operators_scheduler

scheduler_s.a - operators_scheduler

113

o

sequence_baa - generic type list structure

sequence_s.a - generic type list structure
static_scheduler - exccutable static_scheduler
tsort_b.a - topological sorter
t_sort_s.a - topological sorter

The Kodiyak Compiler resides in the subdirectory /caps/static_scheduler/Kodiyak.
The preprocessor is generated by compiling with ke pre_ss.k in the Kodiyak subdirec-

tory. The executable preprocessor pre_ss must be moved to the parent directory

YAV /0

[eaps/static_scheduler.

The user interface executes pre_ss with the command line equivalent:
pre_ss <file name> -0 operator.info
The Ada components of the static_scheduler are ccmpiled by:

a.make static_scheduler -f *.a -0 static_scheduler
(where *.a uses all files listed above which have a .a suffix)

The static_scheduler is executed in the user interface by the command line equivalent:
]
static_scheduler

files.a is dependent upon:
vstrings
sequences
graphs

decomposer_b.a, decomposer_s.a, e_handler_b.a, ¢_handler_s.a,
fp_b.a, fp_s.a, hbb_b.a, hbb_s.a, scheduler_b.a, scheduler,_s.a,
t_sont_b.a, t_sort_s.a are all dependent upon:

files (files.a)

driver.a is dependent upon
decomposer (decomposer_b.a, decomposer_s.a)
exception_handler (e_handler_b.a, ¢_handler_s.a)
file_processor (fp_b.a, fp_s.a)
harmonic_block_builder (hbb_b.a, hbb_s.a)
operator_scheduler (scheduler_b.a, scheduler_s.a)
topological_sorter (t_sort_b.a, t_sort_s.a)

o

pre_ss creates operator.info

decomposer reads operator.info and creates atomic.info
File_processor reads atomic.info

File_processor creates non_crits

Operator_scheduler creates ss.a

The components ‘which comprise the static scheduler are contained in Appendices O

through AE,

115

RES

X. THE DYNAMIC SCHEDULER

A. PREVIOUS DESIGN

The purpose of the dynamic scheduler was to coordinate the execution of all opera-
tors and their debuggers during the cxecution of a prototype. The static schedule, the
non-time-critical operators and the debugging system were all components of the

dynamic scheduler.

B. MODIFICATIONS

There was not any previous implementation of a dynamic scheduler. The previous
design of the dynamic scheduler has been medified so that it only creates a schedule for
the non-time-critical operators of a PSDL prototype description. A file which lists these
operators is provided by the static scheduler. The dynamic scheduler is not concemed
with the activities of any time-critical operators or with any special component which
represents a debugging system. This modification still performs the functions required
and provides for a simplified conceptual model of the execution support system. The
dynamic schedule executes its operators in a sequential manner during the slack times
between the execution of time-critical operators controlled by the static schedule. On a
single processor each non-tim:-critical operator completes its execution before another

non-time-critical operator is started.

116

C. INTEGRATION

The component which comprises the dynamic scheduler is located in the directcry
[caps/dynamic_scheduler. The file is dynamic_scheduler.s. The dynamic_scheduler is
invoked by the user interface when the designer selects the execute option in the main
menu, The dynamic scheduler reads the file non.crits which was produced by the static
scheduler and creates a dynamic schedule which is placed in the file ds.a. The dynamic
schedule, static schedule and Ada translation of the PSDL prototype are all compiled and
linked into an executable data component which is currently called prorosype. The

dynamic scheduler is contained in Appendix AF.,

117

XI. THE DEBUGGER

A, PREVIOUS DESIGN

The purpose of the debugger was to provide run-time support for the execution of
prototypes. The debugger was designed as two components: one for the static scheduler
and one for the dynamic scheduler. The debugger processed errors encountered by either
scheduler, The static debugger would process crrors while attempting to create a
schedule and the dynamic debugger would process emrcrs that occurred while the opera-
tors were executing. Both debuggers were to operate in a similar manner. They would
repost an error condition, if possible correct the error, then permit the user to dictate
whether execution should continue or terminate. All information relating to an error

would also be written to a file for recall.

The static debugger was to process the following errors [17):

- MET_Not Less_Than_MRT

- MET_Not_Less_Than_Period
- No_Initial_Link_Op

- No_Matches_Found

- MCP_NOT_Less_Than_MRT
- MET_Not_Less_Than_MCP
- No_Base_Block

- Fail_Half_Period

- Bad_Total_Time

- Ratio_Too_Big

- Over_Time

- Invalid_Schedule

- Schedule_Error

- MET_Required

- MET_GT_Parent

- MET_Sum_GT _Parent

118

= Crit_Op_Lacks_MET
- Crit_Op_Lacks_MET
- Excessive_Constraints_Altered

The dynamic debugger was intended to process errors identified during run-time exe-
cution of both time and non-time critical operators. These errors were [17]):

- Buffer_Underflow

- Buffer_Overflow

- Unprocessed_Exception
- Insufficient MET

- Excessive_Execution

The dynamic dcbugger was to provide a user with an option 0 adjust the MET of an

operator without terminating the execution of the prototype or to terminate the execution

of the prototype. i

B. PREVIOUS IMPLEMENTATION

The previnus implementation consisted of two Ada programs. The implementation
lacked the maturity required for integration into CAPS. The researchers involved with
the parallel development of the static scheduler and the dynamic scheduler, Kilic and
Palazzo, found the previous design and implementation of the debugger too awkward to
integrate with their tools. The previous implementation has not been integrated into
CAPS but should provide guidance in the design of the static and dynamic schedulers,

and consideration in a more complete design of the debugger.

119

C. MODIFICATIONS

The design and implementation of the static debugger was essentially an exception
handler and was partially implemented as a component of the static scheduler. The
errors identified by Wood which were not implemented in the current static scheduler

require further evaluation to determine their relevance.

The design and implementation of the dynamic debugger essentially provided an
interface with the user to adjust the METSs of operators which fail to satisfy their time
constraints. The implementation did not contain any mechanism for actually effecting
this change. The effect of changing the MET for one particular eperator must be con-
sidered in terms of the static schedule. We have not currently determined whether or not
a new static schedule should be built when a MET is changed in the run-time debugger.
We also suspect that arbitrarily changing a MET in the run-time debugger may result in a
prototype design which might not have a feasible static schedule. Possibly, the debugger
should evaluate the side effects which will result in changing a MET and establish boun-
daries to the user. Care must be taken to ensure that the user is not allowed to modify the
prototype design in the run-time debugger thus causing the prototype to self-destruct.

These issues deserve careful consideration in the further design of a run-time debugger.

120

XII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Our research has contributed towards the development of a rapid prototyping
language and a rapid prototyping environment. The necessary characteristics, features,
and difficulties with the development of such a language and environment have been
refined as a result of the long term research effort which this thesis describes partially.
The support towards software development and evolution which a rapid prototyping
environment may or should provide and some of the important issues encountered with
its development have also been better defined.

This thesis recearch encorporated the first.attempt to assemble the previous work on
individual tools into one integrated environment. This required a top-down view of the
environment necessitating a much more comprehensive understanding of the major
issues of a rapid prototyping environment than is required for a bottom-up view of a par-
ticular tool. As the integration progressed more and more knowledge of the design,
structure and implementation of previously developed tools and knowledge of the tech-
nologies used in their implementation was required to enable the redesign, partial imple-
mentation and sdaption into an integrated environment. OQur current state of implementa-
tion reflects an ability to work in or understand PSDL, Ada, C, Pascal, Unix, Kodiyak,

SSL and Sunview Graphics. Future modifications may also require this same knowledge.

121

b amoed

The current state of development supports the view that it is impossible to com-
pletely state the requirements of a system in advance and that the development process
itself changes the perceptions of what is possible or necessary. This has been reflected in
previous chapters. The actual development of the tools and the environment has been
performed primarily by many graduate students over a long period of time. Student con-
tributions are constrained to relatively short time periods. Consequently, the design of
CAPS has continued to evolve over time as different people have become involved. This
work does not always reflect the ideal solution to a pacticular issue or implemnentation
problem. It has been influenced by the early decision to permit students enough latitude
to muke the best use of their backgrounds and to permit them to explore the arcas which
interest them most. As the design and implementation have matured, the leaming curve

associated with an overall understanding of the environment has increased.

Related research areas currently in progress at the Naval Postgraduate School are:
- a graph model for software maintenance

- automatic merging of prototype versions

- generation of a2 CAPS interface with X windows

- prototype analysis and schadule matching
- survey and evaluation of current rapid prototyping processes

B. RECOMMENDATIONS

Version control for our implementations is currently performed manually, The pre-
vious lack of proper documentation and varsion control created significant difficulties
during the initial stage of our integration. Previous incorrect versions of many of the

implementations described in this thesis exist outside of the configuration used here. In

122

T T

‘ many cases, the implementations used in our integration are the only correct versions

which exist on our system.

For evolution purposes implementation path names have been specified fully so that
a new installation or a change in the system configuration may be effected by making
global substitutions of the old system path names with the new system path names. Sys-

tem dependent ot configuration dependent path names exist in the following files:

- caps.c 3
- graph.c

- nodes.p

- sc

~fp_ba

- scheduler_b.a

- dynamic_scheduler.a

Significant follow-on rescarch is requires in the areas of view consistency, reusabil.
‘ ity, and run-time debugging. These issucs and additional areas have been defined in

greater detail within applicable chapters.

APPENDIX A PSDL GRAMMAR

Optional items are enclosed in [square brackets J. Items which may appear zero or
more times appear in { braces). Terminal symbols appear in * double quotes "', Group-

ings appear in (parcntheses).

padl
= (component]}

component
= data_type
| opexator

data_type
= “type" id type_spec type_impl

operatox
= "operator" id operator_spec operator_impl

type_spec
= "apecificaticn (type_decl] {"operator™ id operator_spec)
[functionality] "“end"

type_impl
= "Iimplementation ada" id (" text "}" "end"
| *implementation" type_name {"operator™ id operator_impl) "“end"

operator_spec
= "specification® (interface) {functionality) =end"

opexzator_impl
w “{implementation ada"™ id "(" text ")" *end"
| "implementation® padl_impl

type_decl
= id_liast ":" type_name ("," id_liat ":" type_name)

functionality
= [keywords] {informal desc] (formal desc]

124

padl_impl
=~ data_flow_diagram (atxeams) (timera) {control_constraints)
{informal desc) “end"

type_name)
- id :
| id *(™ type_decl)"

intexface
~ attribute (rejymts_trxace]

id_list
- id (", " id)

keywords
= “keyworda™ id_liat

informal desc
= *"description® "(* text *}"

formal_desc
= "axioma™ "“(™ text “}" 7

data_flow_diagram .
= "graph® link {link) N

straams g
= “data stream® type_decl 3

timers
= "timer™ id list

attribute
= input
| output
| generic_ param
| astates
| sxceptinna
| timing_ info

input
= ®"input® type decl

output
= "output® type decl

generic_param
= "genexic" type decl

states
= "states" type_decl "initially" expression list

128

excopticna
» "oxceptions® id liat

timing info
» ["maximum execution time" time] {"minimum calling period® time]
{"maximuwn response time" tima)

reqmta_trace
= "by requirementa" id_liat

link
w id "." id (":" time) "~>" id

control constrxaints
w "contxol conatraints" constraint {conatraint)

conatraint
» "anerator® id
("txiggered" (txiggex | ({triggexr] "if" predicate] (rxegmts trace))
("period® time (reqmta_tracuj)
("£inish within® time (xeqmta_trace)]
{conatraint_options)

tcigger
= "by all" id list
| “by some™ id list

conatraint_options .
= “output® id_list "if" predicate (reqmts_trace)

| "exception™ id [“if" predicate] [reqmts_trace]
| timer_op id {"if"™ predicate] ([reqmts_trace]

timer_ op
w “read timer®
| "reset timex®
| “staxt timec®
| "stop timex®

expression_list
= expression ("," expression)

time

= integer [unit)
unit

- Ims'

| "sec"

| "min"

| "hours"

®

‘ expreasion
= constant

| id
| type_name "." id "{" expreasion liast *)*

predicate
= simple_expresalon
| aimple_expression xel op simple_expcession

simple_expression
= {sign] integaxr (unit)
| (sign] real
| {"not™) id
| atring

| {("not™} " (™ predicate ™))"

{ ("not™] boolean_constant

= "and®
| "ox™

new
P

I)I

|

|

I LYo,
o =

' I/_n

I

resl
~ integer "." integer

integer
= digit (digit)

boolean constant
= "trye”
| "false™

numeric_constant
= real
| integer

constant

= numberic_constant
| boolean_constant

‘ 127

aign
-N.'.n
ll..ﬂ
char
w any printable character except "“})*
digit
- Q ., 9™
letter
“ "a ., 2%
| *A .. 2"
lﬂﬂ
alpha_numberic
= letter
| digit
id
= letter (alpha_numeric)
atring
- MNR (Chl!} nan
text

= {char)

128

PORNNPRRIPL 7R,

APPENDIX B USER INTERFACE

/t*kltAnhkﬂtﬂﬁawnﬁt.iﬂﬂhliﬁﬂi\\.Qﬁﬂﬂhﬂl!iiﬂﬁ*ﬂﬂ‘tﬂﬁﬁﬂﬂi!ﬂt.‘ﬁ..ﬂﬁttaﬂﬂiﬂitﬁtl
FILE: caps.c

AUTHOR: Laurxa J. White

DATE: 29 Dacembax 89

PURPQSE: CAPS - User Interface
ﬂﬂﬁhﬂﬂhiﬁﬂhtﬁﬁtaﬁﬁﬁhiﬂﬁﬁiﬁiﬂﬁﬁiikﬁQQiﬁQhtﬁﬁtﬂﬂﬁﬂiﬁﬂ*ﬁﬁit.ﬁiiﬁ&ﬁti..tﬂﬁ.ﬂ../
#include <stdio.h>

tinclude <sys/file.h>

finclude <ays/wait.h>

f#include <signal.h>

/* aystem dependent pathnames */

fdefine SERVER *suns2*®

#define SHELL "/bin/csh”

§define R_SHELL */n/suns2/usxc/ucb/xsh"

fdefine TEXT_FILE */n/auns2/vork/caps/prototypes/psdl. .txt™

#define ADA_COMPILER %/n/suns2/usx/suns2/VADS/bin/a.make*
#define GRAPHIC_EDITOR ™"/n/suns2/work/caps/graphic_editor/ge"
#define SDE "/n/suns2/work/caps/syntax_editor/pev"
fdefine LOCAL_MANUAL "man pe"

fdefine REMOTE_MANUAL “rsh suns2 man pe"

#define TRANSLATOR */n/suns2/work/caps/txanslatoxr/translatox™

f#define DYNAMIC */n/auns2/work/caps/dynamic_scheduler/dynamic_schedulex®
fdefine STATIC "/n/suns2/work/caps/static_scheduler/static_schedulex*®
§define PRE_SS */n/suns2/work/capa/static_scheduler/pre_ss*

#define PSDL_COMPOSITES "/n/suns2/work/caps/prototypes/operator.info”
fdefine PSDL_ATOMICS */n/suns2/woxk/caps/prototypes/atomic.info"

#define PROTOTYPE "/n/suns2/work/caps/prototypes/prototype"

fdefine MV_TL_WORK "mv /n/suns2/work/caps/prototypes/tl.a \
/n/suns2/work/caps/tl.a"

fdefine MV_TL HOME *mv /n/suns2/work/caps/tl.a \
/n/suns2/work/caps/prototypes/tl.a"

#define MV_SS_WORK *mv /n/suns2/work/caps/prototypes/ss.a \
/n/suns2/work/caps/ss.a"®

§define MV_SS_HOME *mv /n/suns2/work/caps/ss.a \
/n/suns2/woxrk/caps/prototypes/ss.a"

fdefine MV_DS_WORK *mv /n/suns2/work/caps/prototypes/ds.a \
/n/suns2/work/caps/ds.a"

#define MV_DS_HOME *mv /n/suns2/work/caps/ds.a \

/n/suns2/work/caps/prototypes/ds.a"

union wait status;
int code;

129

PR I

main{)
/ﬁlQﬂRﬂ’QQQQQQﬂtﬂﬁnﬁuﬁﬁﬁﬂlkﬂnhQﬁnkQnﬁkﬂﬂ*iﬂﬁﬂ!ﬂQﬂﬁiiﬂﬂﬁﬁﬂﬂﬂtahﬁiitl*tﬁﬂﬁtl

Function: Main menu foxr CAPS

Dato: 9 May 89
Called By: command line
Calls: construct (), execute(), modify()

Side Effectsa: int code
ARARARAARARARARARARARARRRARAAARARARAARRARAARRARRRAANARRARARRARARARAAARARAR /

{

char choice;
char caxxiage_return;
int capa_done = 0;

while ({caps_done) {
ayatem("clear");
fprintf (stdout, "\n\n\n\n\n"®);

fprintf (stdout, " COMPUTER AXDED PROTOTYPING SYSTIM\n"):;
fprint £ (stdout, *\n\n");

fprintf (stdout," {c) onstruct\n");

fprintf (stdout,™ (e) xecute\n");

fprint£ (stdout,™ (m) oddify\n");

fprint £ (stdout, " q)uit\n");

fprintf (stdout, *\n");

fprintf (stdout, " Select Option: %);

fscanf (stdin, "sc", &choice);
facanf (stdin, "Sc", &caxriage_return);
awitch(choice) {
case ‘¢’
construct () ;
break;
case ’'e’:
execute();
break;
case 'm’:
modify():
break;
case ‘q':
caps_done++;
break;
default:
fprintf (stdout, "\n Invalid Choice\n"®);
sleep(3):
break;
}
)
system("clearc");
exit (0);

®

int construct()
/&A..ﬂ!Qﬁlﬂlnﬂ.Qllﬂl!tl!.ﬂﬂﬂ.lnﬁl*.ﬂﬂ!!ﬂ‘!ﬁﬂ!l.l'.!!ﬂﬂlll..‘.ﬂ..ll.lll'.t.

construct selection fxom caps main menu
submenu for graphic_editor or syntax directed aditor

Function:

Date:
Called By:
Calls:

6 May 1989
main()

file /caps/gzaphic_editor/ge

syntax_editox()

Side Effects: int code
file /capa/prototypes/psdl.txt
file /capa/prototypes/graph.pic
file /caps/prototypes/graph.linkas
file /caps/prototypes/padl.ds
files /capa/prototypes/NewNode,XX

Qﬂﬁiii.ﬂﬁlQﬁQQﬂQ'.ﬁlQi.ﬁ.QﬂﬂﬁlﬂﬁﬂQﬁﬂ.QﬂQﬁﬁ.'Qﬁt!.tl.'.i...'i!...l.h!!..../

{

char editor;
chax carriage return;
int construct_done = 0;

while (!conastrxuct_done) {
system("clesx®™);
fprint £ (stdout, "\n\n\n\n

fprintf (stdout,™
fprintf {stdout,™
fprint £ (stdout, ™
fprintf (stdout,*\n

facanf (stdin, "Sc", ceditor);
facanf (stdin, "sc", &carriage_return);
switch (editor) (

case ‘g’:
system("cleax");
if (fork() == 0)

CONSTRUCT MODE\n\n*");
(g) raphic editox\n");
{s) yntax dixected editor\n®);
() eturn to main menu\n®);
Select Option: %);

code=execl (SHELL, SHELL, *~£",GRAPHIC_EDITOR,0) ;

exit (code);

}
wait (Gstatus);
break;

case ’'s’:
syntax_editor();
break;

case 'r’/;
construct_done++;
break;

default:
fprint{ stdout,"\n
sleep(3);
break;

131

Invalid Choice\n");

int execute() ?
JRARGARGLSS ARG RCAMAAMASARMARAARAGAARRAAARARAAARAGARAARARAARAAARARARNAARARA 5

Function: execute selection from caps main menu :
Dote: 29 Dec 89 :
Called Dy: main() f
Calla: program /capa/translatox/tranalator :

program /capa/static_acheduler/pre_as

program /caps/atatic_scheduler/static_schedulerx

progzam /caps/dynamic_scheduler/dynamic_schedulex
Side BEffecta: £ile /capa/prototypea/padl tl.a

file /caps/prototypes/opexator.info

£i)le /capa/prototypeas/ss.a

£ile /caps/prototypes/non_crita

file /capa/prototypes/ds.a

ﬂﬂlllﬁQﬁﬂ!QQ‘ll!lRAlAﬂl‘liﬂlﬂﬂllQﬂlﬂﬁ..ﬂ..tl!l!!ﬂ!lﬂi.ﬂ!iﬂllﬂﬂ.!lﬁﬂﬂﬂﬂi!ﬂl,

(
char hostname(32);
int check prototype;

asyatem(™cleax");

/* check for source file from the graphic editor or syntax directed
editor which xepresenta curxent prototype design */
if ((check_prototype = open(TEXT_FILE, O_RDONLY, ()) =~ -1} {
fprint£ (stdout, "\nNo Completed Prototype Available\n");
sleep(3);

return 0; ‘
)
close (chack_prototype) ;

fprint £ (stdout, *\nTranslating ...\n%);
if (fork() == 0) ({
code=execl (TRANSLATOR, TRANSLATOR, TEXT FILE, “-o",
PSDL_TL_HOME, 0);
axit (code);
)
walt (Gstatus);

fprint £ (stdout, "\nBuilding Static Schedule ...\n");
if (fork() == 0) {
code=execl (PRE_SS, PRE_SS, TEXT_FILE, “-o%,
BSDL_COMPOSITES, 0):
exit (code);

)
walt (estatus);

1f (fork() == 0) {
code=execl (STATIC, STATIC, 0);
exit (code);

)

wait (&status);

s o

£printf (stdout, "\nBuilding Dynamic Schedule ...\n");
1f (foxk() == 0) {

code~exac) (DYNAMIC, DYNAMIC, 0);

exit {code);

)
wait (Catatus);

system(MV_TL WORK):
system(MV_DS_MWORK) ;
system(MV_5S_WORK) ;

gethoatname (hostname, sixeof (hoatname}) ;
i€ (lstxcmp(hostname,SERVER)) |
if (fork() == 0) {
codc-txccl(ADA;FOH!IL!l, ADA_COMPILER,
"static_schedule®, “-£%, "tl.a", "ds.a", "ss.a",
"-o", PROTOTYPE, 0);
exit (code);
)
)
else |
if (foxk{) == 0) {
code~execl (R_SHELL, R_SHELL, SERVER, “"a.make®,
“static_schedule", "-£%, "tl.a", "ds.a", "ss.a%,
"-0o", PROTOTYPE, 0);
exit (code);
)
)
fprintf (stdout, "\nCompiling ...\n");
walt (&status);

system(MV_TL HOME) ;
syatem(MV_DS_HOME) ;
system (MV_SS_HOME) ;

/* execute */
signal (SIGINT, SIG_IGN);
fprintf (stdout, "\nkxecuting ...\n");
sleep(l);
system(®"cleac");
1f (fork()} == 0) {
signal (SIGINT,SIG_DrL);
code=execl (PROTOTYPE, PROTOTYPE, 0);
exit {code);
)
walt (estatus);
fprintf (stdout, "\nExecution Completed\n");
sleep(3);
signal (SIGINT,SIG_DFL);

133

int modify()

/0ﬁc‘q;a‘-9c'Qo9’QQqnto-Qcpﬁtoqﬂﬁnq-nt!ﬁn&ttﬂntQqtnﬁannnnnnﬂtﬂtlsaaﬁﬁtﬁqna

Function: modify selection from capa main meanu
Date: 6 May 89

Called By: main()

Calls: none

Side Effaocta: none
aaq&paaAhbﬁAhAAAAA’AaAAaAaaaqnQAaAA#AQQ&uhhﬁanhhanaannaaquaniﬂannﬁhAhhnaa/

{
fprint £ {stdout,"\n Modifications in progresa\n");

aleep(3);

134

PRI PP T P ST 0 DR iy

int syntax_editor()
/qon---apoanpgpqaaba-a-ﬁinhaaaannannthuanatttnﬁQtntﬁtnﬁantt-nattﬁtttann-in

Yunction: syntax directed editor option from construct submenu
Date: 6 May 89

Called By: constrxuct {)

Calls; none

Side Effects: £ile /caps/prototypes/padl.txt
anaaa-nqnpnaqwﬂnataaaqthnaoﬂntnnaataaanutaunﬁq--tanatiinnaananﬁaitntﬁaﬁtt/

{
char text;
char hostname(32);
char carriage ratuxn;

ayatem("clear®);

fprint £ (stdout, "\n\n\n SYNTAX DIRECTED EDITOR\n\n\n"):;
fprintf (stdout,™ Do you desire instxuctions\n*);
fprint £ (stdout, " (y)es\n");

fprintf (atdout, ™ (n)o\n");

fprintf (stdout, *\n");

fprintf (stdout, " Select Option: “);

facanf (atdin, “8c", &text);
fscanf (stdin, "sc", &carriage return);
1f (text == fy?; {
ayatem(®"cleax");
gethostname (hostname, sizeof (hostname));
if (lstrcmp (hostname, SERVER))
system (LOCAL_MANUAL) ;
else
system (REMOTE MANUAL) ;
)
if (text wm= fy?) |
fprintf (stdout, "\n\nPress Carriage Return to Continue : ");
fscanf (stdin, "sc", tcarriage xeturn);
)
system(“clear"™);
1f (fork() == 0) |
code=execl (SDE, SDE, 0);
exit (code);
)
walt (&atatus);
system("mv psdl.txt /n/suns2/work/caps/prototypes®);

135

Koo

LVE IO PRIIPUR TR Wat WP S JUPT P S B et

. A

APPENDIX C SHELL SCRIPT FOR GRAPHIC EDITOR

o o e e e e e o e e e e e 2 e —— ————

File: ge

Purpose: shell to run the graphic editor - directs input and output
Muthor: laura . white

Date: 17 dec 1989

frmmm e n e e — ———— —————————— - o e - o o - -

e Mk M e

/n/3uns2/work/cups/graphic_editox/graph
/n/suns2/vwork/caps/graphic_editor/nodes < /n/suns2/woxrk/caps/prototypes\
/graph.links

cat /n/suns2/work/caps/prototypes/graph.links /n/s2uns2/work/caps\
/prototypea/padl.ds >> /n/suns2/work/caps/prototypes/padl.imp

136

L

APPENDIX D GRAPHIC EDITOR

/ﬁﬁ.ﬁ.tﬂl.ikﬂ!Qﬁ!..Qﬁ!ﬂt.!kﬂllﬂﬂﬂﬂl!ﬂ.t.ﬁﬂ.lﬁﬁﬂlﬁ!l'!.Qﬂ.ﬁ..i.l'......l.....iﬂ

PROGRAM: GRAFH.C
AUTHORS: ROGER XK. THORSTEN
LAURA J. WHITE

DATE: 10 Novemberx 1988
nnnaanaaq-aaaanu-nannaaaaﬁaaanaananﬂaanannnaana-nan-naan-qa--anqnnaannan-ann./

/* compile this program with "makid graph.c® %/

#ifdef MAKID

static char

*makid{] = {(

"g (M)cc -g graph.c -o graph -lm =-lsuntool =-lsunwindow -lpixrect®
)i

fendif

#include <stdio.h>

#include <suntool/sunview.h>

#include <suntool/canvas. h>

finclude <suntool/panel.h>

#include <suntool/seln.h>

#include <math.h>

#include <string.h> %%
finclude <ctype.h>

/* system dependent names */

fdefine ICON »/n/suns2/work/caps/graphic_editor/editor.icon"
f#define PRINT "screendump | rsh virgo lpr -Pssl -v %

f#define SERVERL *virgo®

fdefine SERVER2 “sunas2”®

fdefine SERVER3 *libra"

f#define SERVER4 "taurus®

/* define constants for the editing modes */
j§define OPERATOR
fdefine DATA FLOW
§define SELF_LOOP
#dafine INPUT

#define OUTPUT

fdefine EXTERNAL

e WO

f#define PX 3.141592654

fdefine DISP_WIDTH 142 /* the display width */
#define DISP_HT 55 /* the display height */

137

AL

tdefine ARROW_LENGTH 9
fdafine TEXT _MAX_LEN 35
fdefine TIME_MAX_LEN 10

tdefine PROXIMITY 25

/* length of the arxow

head

/4 length of name which is visible
/* length of the time which ia viasible

/* impoxt predefined editor

astatic short editor_icon() = {

#include XCON
)¢

DEFINE_XCON_FROM_IMAGK (editor, editor_icen);

Frame frame; /* define the handle for the frame

Penel mouse_panel, /* defines the handle for the mouse interface panel .
op_mode_panel, /* define the handle for tha op mode selection panel
edic_mode_panel, /* define the handle for the side panel
time_panel, /* define the handle for the time panael
name_panel, /% define the handle for the name xeading panel
message_panel; /* dafine tie handla for the meszage paneltr/

Canvas drawing_canvas;
Event tevent;
Pixfont 4bold;

Pixwin *drawing pw;

int sexver = 0;
int edit_mode;
int name_checked = 0,

time_checked = 0;

int graph_saved = 0;

Panel_item object_name,

/% define the handle for the drawing ¢
/* define the handle for e

/* define tha handle for the bo

/* define the handle for the drawing p
/* gloabal - flag fox server/diskless
/* global -~ stores the current edit

/% global - signals that name is
/* global - signals that time is

/* global - signals whether o
the graph has been

/* handle for the

message, /* handle for the

time_constraint; /* handle for the

char Atmp_buf, /* global - buffer to read the name

tmp_bufl; / global - buffer to read the time constraint

FILE f, /* define the PSDL link statement
*g;

typedef struct {
int length;

/* the number of characters in the

138

icon

anvas
vents
rdera
ixwin
aun
mode

valid
valid

r not
saved

name
mag
time

into
into

file

nama

¢/
2/
o/
«/

¢/
o/
o

*/
*/
*/

*/

*/
*/
*/

%/
*/

i

RO

z

Elanr 0 LA W a Ty oA

‘ chaxr string(80); /* arxay to hoid the name or time atring ¢/

JHame, Time;

typedef atrzuct linef /* atores output and data flow lines */
Name *name; /* name of line ®/
int lntype; /* identifies the type of line it is */
int xatart; /* the x coord of the lines atarting posit ¢/
int ystact; /* the y coord of the lines starxting posit */
int xatop; /* x coord of itas stopping poait */
int ystop; /% y coord of its stopping posit */
Name Sdeat; /* opexator that the line teminates at ¢/
struct line “*next; /* pointer to the next line from thi: operator */

}Line;

typedef struct operator{ /* astorage stucture for the operators and inputs */
Name *nane; /* operator’s name */
int optype; /* identifies contents as an opérator or external */
int xstart; /* x cooxd where operator should staxt to bhe drawn ¢/
int ystarct; /* ¥ coord where operator should start to be drawn ¢/
int xatop; /* x coord of the operator’s opposite coxner */
int yastop; /% y cooxrd of the operator’s opposite coxner */
Time “*time_conat; /* maximum execution time for the operator */
Line *head; /* head of the operxator’s output list */
Line *tail; /% tail of the opexator’s output list «/
struct operator *next; /* pointexr to next operator in list o/

}Operator;

‘ typedef struct(/% the list for operators and inputs */
Cpezator *head; /* pointer to the head of the list */
Operator *tail; /* pointer to the tail of tha list */

)Operator_list;

Operator_list operator list;
Operator_list %op_ list = &opexator_liat;

Operator *op, *sop, *dop;

Namne name_pointer;

Name *name = &name_pointer;
Time *te;

Line *1n;

/* forward declarations of functions */
static Notify value process_canvas_events();
static Notify value mode_select();

Operator *alloc_operator():
Operator *pick operator(};
Operator *create_op():

Line *alloc_line({);
Line *pick_line();

PP PROL PR

et s d K AL

Line

Hama
liame

Time

int
int
int
int

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

screate_linz();

sgxtoxnal(),
*get_name();

*get_time_const{);

ia_op_pick();
is_line_picki):
ia_valid ada_id();
is_valid time_conat(};

append_to_op_liat ()
get_hostname();
quit_proc();
load_proc();
dump_screen();
searxch();

compose () ;
decompose() :
store_proc();

out _of mem();
input_text();
doput_time();
appenc_line to_op();
is_op_pick{);
is_input_pick();
proceas_operxator();
process_line():
rubber_band();
redraw_diagram();
delete line():
delete_op():
delete_input lines();
display_error_msg();
display name();
display_tc{):
draw_arrowhead():
draw_object () ;
create_PSDL();
stcre_diagram();

140

Y

T s

PP WS . W

e T ek 2 e TR ea

b AR A Lo

main(arxgc, argv)

int arge;
char **acgv;

/lt.luﬁ.nﬁDttlllﬂ'Q!ﬂ!ﬂl..!tliqtlﬂﬂ!ﬂiﬁﬂﬁ!!ﬁ'ﬁill!ﬂ!.'ﬂ!lilltl!ttt.!ﬂﬂt.tﬁ.!!lt
function: Suets up graphic editor

called by: CAPS Uaer Interxface

calls: create_mouse_panel ()

creata_operating mode_panel ()
create_editing_mode_panael ()
create_name_panel ()
create_ time panel ()
create_message panel()

ﬂ.ﬁﬂtl!lﬂlQl.ltﬂt!ll!‘ﬁﬂﬂ!ﬂﬁl!ﬂﬁiﬂﬂﬂlﬂﬁ!lﬂﬂlﬁ.ﬂﬂl'.'ﬂﬁI.h.Qih‘.i.l.i!.ﬂ.iﬂl.../

get_hostname();

/* cause borders to highlight if region entexed */
bold = pf_open("/usx/lib/fonts/fixedwidthfonts/screen.b.12%);
if (bold == NULL) exit(l);

/* create the outer display frame */
frame = windcow_creave (NULL, FRAME,

FRAME_LABEL, “CAPS - GRAPHIC EDITOR®,
FRAME_ICON, &editox,

FRAME ARGS, arxgc, argv,
WIN_ERROR_MSG, "can’t create window.%,
WIN X, 2,

WIN_Y, 1,

WIN_ROMS, DISP_MT,

HIN_COLUMNS, DISP_WMIDTH,

0);

/* create mouse_panel */
mouse_panel = window_create(frame, PANEL, WIN _FONT , bold, J):
create_mouse panel();

/* create op_mode_panel */
op_mode_panel = window_create(f-ame, PANEL, WIN _FONT , bold, 0);
create_operating mode_ panel();

/* create editing mode panel */
edit_mode_panel = window_create (frame, PANEL, WIN_FONT, bold, 0);
create_editing mode panel();

/* create panel to read object names */
name_panel =~ window_create(frame, PANLL, WIN_FONT, bold, 0);
create name_ panel{();

/* create panel to read operator time constraints */

time_panel = window_create(frame, PANEI,, WIN_FONT, bold, 0);
create time panel();

141

/% crecate mesaage_panel ¢/
ineasage_pancl = window_create(frame, PANEL, WIN_FONT, bold, 0);
create_measage_panel();

/* cxeate canvas to dcaw on */

drawing_canvas = window_create(frame, CANVAS, WIN_FONT, bold,
WIN_CONSUME_KBD_EVENT, WIN_ASCIX_EVENTS,
WIN_EVENT_PROC, process_canvas_svents,
CANVAS_RETAINED, TRUE, 0);

/* cause drag events to be accepted */
window_set (drawing canvas,WIR_CONSUME_PICK_EVENT, LOC_DRAG, 0);
drawing_pw = canvaa_pixwin(drawing canvas);

/* initialize the operator list #*/
operator_list.head = operator_list.tail = NULL;

/% poll for events in the frame */
window_main_loop (fxame);

142

get_hoatname()
JARRRAAAACRARARARARAKARRAAARARARAEARARRAARARARARARANAARARRARARAAARRAAAAAARRRARARAR
function: This function determines if the usor ia uaing a sun sexves.

The scrxeendump capability for the graphic editoxr is only fuanctional
if the editor ia operating on a sur sexver., The ccntxol panel
button and registration of the dump acreen function arxe not
paxt of the graphic display if using a diakle=a workstation.

called by: main()

calls: none

ﬁ.ﬁhﬂlhthhnﬁﬁ&thhﬂﬂﬁﬂiQﬁkihiﬂﬂlﬁﬂ.tﬂhlﬁﬁﬂiﬁiﬁ.htllﬂQﬁlﬁﬂi.t.hﬁﬁﬁﬂﬂﬁ..ﬁ.iﬁ.‘ﬁtii/

{

char hostname(32]);

gethostname (hostname, sixeof (hoatname));

if (!stxemp (hostname,SERVER1))
server+t+;

1f (!strxcmp (hostname,SERVER2))
sexvert+;

if (!stxcmp (hostname,SERVER3))
servert+;

if (!stxcmp(hostname, SERVEA4))
servert+;

143

create_mouse_panal ()

JRRAAALARARAARRAAAARARAGARARARARARARAGARARAAARRARAARARARARARANARARARANARARRAR
Drawa the mouae interface panel which contains mesaages which

function:

describe the functionality of the mouse buttons

called by: main{)
calls: none

!Qllﬁ!QQQ.#Qiiiﬂtlﬁﬂﬁﬂﬁﬁﬂ.ﬂﬂﬁﬂﬁﬁuﬁﬂﬂ!ﬂﬂhﬂiﬁﬂ.lﬂﬂﬂﬁﬂiﬁ’ﬁﬂtﬁﬁﬁl!iiﬂﬂﬁﬂﬂﬂﬂﬁﬁﬂﬁﬁ'i/

{

/* diaplay panel messages */
panel_create item(mouse_panel, PANEL MESSAGE, PANEL_LABEL_STRING,
* MOUSE INTERFACE:", 0);

panel_create_item(mouse_panel, PANEL MESSAGE, PANEL_LABEL_ STRING,
" L) o)-
[’

panel_create_item(mouse panel, PANEL MESSAGE, PANEL_LABEL_STRING,
" " 0):

panel_create item(mouse_panel, PANEL MESSAGE, PANEL_LABEL_STRING,
n Left Mouse SELECTS graphic editor functions and", 0);

panel_create_item(mouse_panel, PANEL MESSAGE, PANEL_LABEL_ STRING,
“locations for new graphic objecta", 0);

panel_create_item(mouse_panel, PANEL_MESSAGE, PANEL_LABEL_STRING,
L] .t 0):

panel_p:eate_item(mouse_panel, PANEL_MESSAGE, PANEL LABEL STRING,
" Middle Mouse MOVES graphic objects®, 0);

panel_create_item(mouse_panel, PANEL MESSAGE, PANEL_LABEL STRING,
" L] 0).
’ ’

panel_create_item(mouse_panel, PANEL MESSAGE, PANEL_LABEL_ STRIMG,
" L] 0).
L4 ¢

panel_create_item(mouse_panel, PANEL MESSAGE, PANEL_LABEL_STRING,
" Right Mouse DELETES when positioned:*, 0);

panel create_item(mouse_panel, PANEL_MESSAGE, PANEL_LABEL_STRING,
"within an operator, on the tail of a self loop,™, 0):

panel_create_item(mouse_panel, PANEL MESSAGE, PANEL_LABEL_STRING,
"on the tail/head of a data flow, input or output®, 0);

/* f£it border around the mouse panel */
window_£it_height (mouse_panel);

144

I L AU

create operating mode_panel ()
/lﬁ!!'....lqaﬁ.ﬁﬁﬁﬂ'QttlﬁﬂQQ.OQQlllt...tﬂl'..'.Q...Q.ﬂQl-l'iﬂallﬂﬂ..ﬁﬂﬂlﬂﬁlﬁﬂll
function: Thia procedure buildas the operating mode panel for the graphic
editor, which consiats of the buttons : *"Print Display®™ (if using
a serxver), “Load Existing®, "Storxe®™, and "Quit™.
called by: main()
calls: none
‘ttﬂﬁ..ﬂﬂﬁﬁﬂt‘..*OﬁﬁﬂﬂﬁﬁiﬂﬂﬁQﬂﬂ.ﬂii.ﬂ.ﬂﬁ.ﬂﬁﬁ.Q.Q.ﬁtﬂQ.Q.......QQ..Q‘Q..Q...QQ./

{
/% display panel message */
panel_create_item(op_mode_panel, PANEL MESSAGE,
PANEZL_LABEL_STRING," OPERATING MODE:*, 0);

/* create bhutton to permit a screendump of diaplay */
if (serxver) |
panel_create_item(op_mode_panel, PANEL BUTTON,
PANEL_LABEL IMAGE,
panel_button_image (op_mode_panel, "Print Design®", 0, 0),
PANEL _NOTIFY_PROC, dump_screen, 0);
)

/* create button to cause data to be read from the data base */
panel_create_item(op_mode_panel, PANLL_ BUTION,
PANEL_LABEL_IMAGE,
panel_button_image (op_mode_panel, “Load Existing®, 0, 0},
PANEL NOTIFY PROC, load proc, 0):

/* create button to interface with databases */
panel_create_item(op_mode_panel, PANEL BUTTON,
PANEL_LABEL_IMAGE,
panel button_ image (op_mode panel, “Search", 0, 0),
PANEL NOTIFY PROC, search, 0);

/* create button to compose design*/

panel_create_item{op _mode_panel, PANEL_BUTTON,
PANEL_LABEL_IMAGE,
panel_button_image (op_mode panel, "Compose®, 0, 0),
PANEL_NOTIFY F 1C, compose, 0);

/* create button to decompose design*/

panel_create_item(op _mode_panel, PANEL BUTTON,
PANEL LABEL IMAGE,
panel button_image (op_mode_panel, *Decompose®, 0, 0),
PANEL NOTIFY PROC, decompose, 0);

/* create button to store the diagram in the data base */

panel_create item(op_mode_panel, PANEL_ BUTTON,
PANEL_LABEL IMAGE, panel button_image (op_mode_ panel, “Store", 0, 0),
PANEL_NOTIFY PROC, store_proc, G);

145

PN WY

sds

/* create button to terminate the progzam */

panc)l_create_item(op_mecde_panel, PANEL_BUTTON,
PANEL_LRBEL_XMAGE, panel_button_image (op_mode_panel, "qQuit®,
PANEL_NOTIFY_PRQC, quit_proc, 0);

/* f£it bordar around the top panel */
wizdow_£it_height (op_mode_panel);

146

0, 0),

T P T L T I Py

create_editing mode_panel{)
/tlihAAQ‘AQQQQR!A!QQlﬁﬂ‘hﬂlhﬂh.!kﬂlltAtﬂtﬁﬂli!ﬂﬂklil!ilﬂ!ill.ﬂ‘ﬂ‘!ﬁii!!ﬁ.llﬂilt

function: buildas the editing mode panel for the graphic

editor
called by: main()
calla: none

ﬂﬁ‘ﬂ.hﬁ..#l.ﬂhhQQQQQQGQQﬁﬁ.QQﬁthﬂhlQQQ.-.ﬁﬂlﬂﬂ!ﬂQﬁtQﬁﬁﬁ!ﬁiﬁ.ﬁllﬁﬂﬂﬁ!ﬁllﬁlﬁﬂﬁﬂl

{

/* create the mode select panel */
panel_create item(edit mode_panel, PANEL_CHOICE,
PANEL_LABEL_STRING, " EDITING MODE: *,

PANEL_CHOICE_STRINGS, " Draw Opexatox ",
" Draw Data Flow .,
. Draw Self Loop ",
" Draw Input ",
" Draw Qutput .
0,

PANEL FEEDBACK, PANEL INVERTED,

PANEL NOTIFY PROC, mode_select, 0);

/* fit window around the editing mode panel */
window_f£it height (edit_mode_panel);

147

3 WY

exeate_name_panel ()
/-onkonqaoaQbaA--pqna-as.gogAcq0c;Aat#Qﬂaﬁtnanﬁuninﬁanaanthataannaﬁatnhanht

function: buillds the identifier name panel for tha graphic editor
called by: main{)

calls: none
AAAARAANARLARANGARANARAANARRARAAPRAAARARARARRANARRARAARARARARARRANARRARRARARRAR)

{
object_name = panel create item(name_panel, PANEL_TEXT,

PANEL_LABEL_STRING, " YDENTIFIER NAME:®,
PANEL_VALUE, ne,
PANEL_VALUE_DYSPLAY_LENGTH, TEXT_MAX_LEN,

0):

panel_create item{name_panel, PANEL_BUTITON,

PANEL_LABEL_IMAGE, panel button image(name_panel, "Read Name", 0,0),
PANEL NOTIFY PROC, input_text,
0}:

window_f£it_height (name_panel);

°

create_time_panel ()
Iﬂbl'.Qi!ﬂﬂﬁﬁﬂﬂﬂﬂ.ittiﬂtﬂﬂ'k’ﬁﬂ.tﬂ-&ti.ﬂﬂﬁﬁtﬁQﬂﬂtnﬂﬂﬁitlliﬂﬁ".ﬁtt.htnﬁﬂﬂﬂ'...!'
function: builds the time constraint panel for the graphic editor
called by: main()
calla: none
QﬁﬂhﬁlﬂﬁﬁltiﬁﬁlﬂiﬂﬁﬂnaﬁiQﬁﬁﬂﬁﬂQﬁﬂﬂ#ﬂiﬂnhf,tﬁﬁﬂ.ﬂﬁa.lﬂﬁiﬂQﬂilﬁﬂﬁt‘tﬁﬁitiil‘ﬂllﬁﬁ/
{
time_constraint = panel_create item(time_panel, PANEL_TEXT,
PANEL_LABEL_STRING, ® TIME CONSTRAINT:®,
PANZL_VALUE, AL
PANEL_VALUE_DISPLAY_LENGTH, TIME_MAX_LEN,
0}:

panel create_item(time_panel, PANEL MESSAGE,
PANEL_LABEL STRING, " "
0);

panel create_item(time_panel, PANEL BUTTON,
PANEL_LABEL IMAGE, panel_button_image(time_panel, "Read Time“, 0,0),

PANEL_NOTIFY_PROC, input_time,
0):

window_fit height (time panel);

149

create_massage_pancl ()
/nntutuaﬁkpAnaqnnuanaawaka#annnqauunnnthnaannusu*ta*aﬁtﬁﬁaﬁﬁana-tanuawuunnun

function: builds message panel for editor errxocr messages to the user

called by: main()

calls: none
ﬂaﬁinﬁﬂﬂnﬁﬂ#t*tﬁiQﬂiQﬁﬁtﬁﬁﬂﬁiﬁﬁﬂti.ﬂﬂﬁﬁiﬂﬂﬁﬁiﬂﬂﬁﬁtﬁﬂﬁﬂiﬁﬂﬂiiﬂ!ﬂﬂﬂi*t!!iltiﬁﬂﬁ!/

(
/* display measages panel label*/

message~panel create item{message_panel, PANEL MESSAGE,
ge=p - - P =
PANEL_LABEY, STRING,
* MESSAGE PANEL:", 0);

window_£it_ height (measage_panel);

®

Latd

542 e wih e Nntandiai s it sl o

static Notify value
mode_select (item, value, event)

/Q!'lthitﬂ!ﬂ'i.ﬂ.ﬂtltlt'tﬂltiﬁ'ﬂ.i.'il!it.Qiﬂﬂii'iitﬁlﬁl.'.t.‘l'!....'.‘i.!'..'

function: sets the mode that the editor ia operating in by setting the
global variable "edit mode® to one of the predefined mode constante

QltitﬂQhﬂﬂiﬂﬁ.ﬂﬁQﬂ‘ﬁ!t..Rﬁ.liﬂﬂiiﬂiiitﬂﬁiiﬁiiﬂ!‘.ﬁit!i..t'i!ﬁt.l'!ltﬁlﬁit.ﬂi../

(

Pane)_item item;
int value;
Event *event.;

called by: notifiex
calls: none

switch(value) {
case OPERATOR:

case DATA_FLOW:

case SELF_LOOP:

case INPUT:

case OUTPUT:

default:

)

return;

edit_mode
bhreak;

edit_mode
break;

edit_mode
break;

edit_mode
break;

edit_mode
break;

break;

OPERATOR;

DATA_FLON;

= SELF_LOOP;

INPUT;

OUTPUT;

151

quit_proc()
JAAARRARRRAGAARRRAANAMARRAARAANARRRAARARARARARAGAARARARAARARAARAARASARAARRARS
function: aeta the moda that the editor ias operating in by setting the
global variable "edit_mode" to one of tha predefined mode constants
called by: notifier
calls: display_exzor_mag()
ﬂﬂﬁﬁCﬁtl.lAtlttoiﬂQQﬁﬂ.lﬁﬂ!QtQQQiQQOQﬂ\Q.‘QQQ!!QQlﬂi.ﬂl'iQQQQQQOQQQQQOQQQO!.QQQ/

{

if (grxaph_saved) {
window_set (frame, FRAME _NO CONFIRM, TRUZ, Q);
window_destrxoy (frame);

}

else {
display_exrox mag(6);
window_set (frame, 0);
window_deatzoy (fxame);
display_erxrox_mag(l);

°

codke

e

il

i

LR TSP |

1

Lo

load_proc()

/..do‘...p!’ﬂ!.aoltﬂo..pl0..tq..t..‘.tpl.....Ql..QllAIQ.Ql.tﬂ....lﬂ.‘.lﬁ.ﬂ...ﬁ.

function: This function causes a previously drawn and atored diagraa to
be loaded when the load existing buttun is selected.
called by: notifiex
calls: create_op()
append_to_op liat ()
create_line()
append line_to op{()

...‘Q.Q!.Q.OQIQ.Q..QQQ.Q.QG.IQOQQ‘.QQlQ.Q.ﬂ.Q.QlQ..Q.....Qil.‘.........i...i../

{
int optype,xl,yl,x2,y2;
Name *onama,
*dest;
Time *tc;

graph_saved « 0;
g = fopan("/n/suns2/work/caps/prototypes/graph.pic®,*x");

while (lfeof(g)) (
oname = (Name *)malloc(sizeof (Nama)):;
facanf (g, “8din", Loptype) ;
facant (g, "sd\n", &x1);
facan¥ (g, "8d\n", &yl);
facanf (g, "¢d\n*", &x2);
facanf (g, "td\n", £y2);
facanf (g, "sa\n",cname->atring);
oname->length = strlen(oname->string);
if ((optype == OPERATOR) || (optype == EXTERNAL}) {
tc = (Time *)malloc(sizeof (Time)}:
fscanf (g, *$s\n",tc->string);
tc~>length = strlen({tc->stxing):
op = create_op (oname,Optype,xl,yl,x2,y2,tc);
append to_op list(op_list,op);
)
else {
dest = (Name¢ *)malloc{sixzecf (Name)):
fscanf (g, "Ss\n",deat->stxing);
dest->length = strlen(dest->string);
dop =~ creata_op (dest,optype,xl,yl,x2,y2,tc);
ln = create_line (oname,optype,xl,yl,x2,y2,dop):
append line_to_op(op,1n);
)
)
fclose(q);
redraw_diagram();

153

dump_screen()
I.QO!!Q.“’!Qll“‘lg,q,.g,{l.ﬂﬂ.ﬂIQ.Q&OQ‘QQ!IQ!Q.’.ﬂﬂlﬁﬁ‘ﬂi.R'!Q!!Q'i.ﬁﬂ.!!l

function: performs a scxeen dump of the graphic editor display.

called by: notiflex

calla: none
a.q.qqqo;ootcoqoqopotqotﬂapaaAﬂanhq-tﬂniﬁaanqﬁﬂaoaqhﬁanhﬁaanninttndtaaﬁhngtnﬁn/

{
syatem{PRINT) ;

secazch{)
/a-aaanaqanntiann-u:-annnaanuaaqnanﬁtannanan-aqiﬁntnnaQnwtanqttuqnn-nnn-antﬁana

function: will intexface with the CAPS database manager when the search
hutton is selected

called by: notifler

calla: none

anaiQsﬁh-aaaoatananaonanqanaataa-saaaahahaanaha.aahaqaﬁuﬁnaainaauﬂaﬁﬁnnaaaawia/

{

]

compose()
/anaqaatuq-oanwtp‘ﬁannﬂﬂt-annnnnnnaaﬂwﬂnntﬁtttﬂ'tiaa&aiwnuﬁtiﬁutanttaﬂﬁttaﬁtn

function: will pexform the composition of a decomposed design when the
corpose button is selected
called by: notlifiex

calls: none
uniﬁnnhnﬂnauknaﬁnnﬁnﬁhnnnaﬁtiﬁahﬁﬁktaini#iktnﬁﬁutttithﬁii*ﬁ*ﬁﬂ*ﬂaﬁ%k*ntkaaﬁtit/

{
)

decompose ()
/kﬁihahtﬁiﬁﬁttiktkiﬁtiﬁiii*ﬁkﬁﬁtittiﬁﬁthk*tkk#*t¢itiit*iitt*i*hitﬁ*i*ﬁtﬂﬁit*tit

function: will perxform the composition of & decomposed design when the
compose button is selected
called by: notifier

calls: none
ARAARARARRRRARARAANARNARNRARRANRNRANAARNRARRNAANRNNARRNRRA AR ANANRRANARANRANRR AR R AANR S/

{
)

®

o

3

LIS £ SR ST | STVN

FINTS

T VO

atore_proc()
/Qﬁtﬂﬂ'tiﬂﬂ!iﬁﬂﬂﬁQﬂﬂltﬁ.i!lﬁﬂ!ﬂﬁﬁihlﬁ‘&iiiiﬁlﬂtﬂQﬁlltﬁlﬂinlilﬁtil’iﬂ..!l...!.lt
function: stoxes the data flow diamrgam into the design data base.
Prior to storing the diagram it calls "create_ PSDL" which
transforms the picture into ita equivalent PSDL statements,
called by: notifiex
calls: create PSDL()
store_diagram()
diﬁ.tiﬂﬁthﬁitihtﬁlﬁtﬂiiﬁiﬂﬁtﬂiﬂhiiiiﬂhiiiiiﬂhihdilh.inQkiititﬁiﬂtﬂﬁiﬁﬁﬁi.ﬁ.!ﬁ./
{
create PSDL();
store_diagram(};
graph_saved = 1;

155

static Notify value
process_canvas_events (canvas,event)

Canvas canvas;
Event Aevent;
JARAANARCA AR RAACARR IR RRA KR RN R AR R AR ARAN DA R AN AR AR RO RARRARRARRARRARARRARAAR RN R AR
function: drawa the graphical objects.
called by: notifier
calla: pick_line()
delete_line()
pick_operxator()
delete_op ()
rubber_ band()
process_object ()
redraw_diagram() .
ARARARRRARRARARKRRRRRARARKARRRARARRKANR AR RARRNARARRRANARKRRRRRARARRRRRRARRARNAR]

(

P O R R e

int id = event_id(aevent);
static int x1, yl, x2, y2;
static int new_posit = 1;
static int left_button =~ 0;
static int middle button = 0;
Operator *op;

Line *ln;

if (event_is_button(event}) ({ /* check for button eventa */
if (event_is down(event)) (/* store location where button goes down */
x1 = event_x(event); /* position of button down event
yl = event_y{event); '
switch(id) {
case MS_LEFT: /* create new objsot */
new_posit =1;
X2 = x);
y2 = yl;
left_button=l;
break;
case MS_MIDDLE: /* pick object for moving */
break;
case MS_RIGHT: /* pick object for deletion */
if ((ln = pick line(op_list,xl,yl)) I= NULL) {
¢p = NULL;
delete_ line(op_list,op,ln);
)
else
if ((op = pick_operator(op_list,xl,yl)) != NULL)
delete_op(op_list,op):
redraw_diagram{);
break;
)
)
else if (event_is_up(event)) {

switch (id) {
®

case MS_LEFT:
rubbex_band{x1,yl,x2,y2);
x2 = @vent_x(avent);
y2 = event_y(event);
process_object (x1,yl,x2,y2);
redraw_diagram();
left_ button=0;
break;
case MS_MIDDLE: /* stubbed */
if (Imiddle_button)
break;
case MS_RIGHT: /* stubbed »/
breuk;

else
if (id == LOC_DRAG) ({
if (left_button) {
if (Inew_poait) {
/* rubber band operator’s boundaxy while being drawn */
rubber_band(xl,yl,x2,y2);
x2 = event_x(event);
y2 = event_y(event);
rubbex band(xl,yl,x2,y2);
)
else
new_posit = 0;

return; J

157

proceasa_object (x1,y1, x2,y2)

int »x1,yl,x2,y2; .

JARPARARARARAARAARRARRAARAAARARARAANAARARRARARAARAARARARARARARARARRARRARARRARAARARG
function: proceases opexators, data £flows, self locps, inputa and outputs
called by: proceas canvas_events()

calls: pick_operatox ()

process_operator()
process_line()
display_serrox_msg()

ttﬂﬁﬂﬂﬁﬁQﬂﬁﬁﬁﬂﬁﬁﬁﬁﬁﬂﬁQﬁhﬁﬁhtii*hﬁiiﬂiﬂihﬂtﬂhﬁ*iﬁhi***tﬁhﬂﬁﬁﬁ*ﬁiﬁﬂhﬁhﬂﬁtiﬁﬂi*ﬁh/

{

Operator *op, *aop, *dop;

awitch (edit_mode) {
case OPERATOR:
if (name_checked && time_checked) {
/* draw object if it is not positioned on top of an existing object */
if (((pick_operator(op_list,xl,yl))==NULL) &&
((pick_opeuzator(op_list,x2,y2))==NULL)) (
process_operator (OPERATOR, x1,yl,x2,y2);
)

)

else {
display erxxox_msg(4);

)

break;
case DATA_FLOW: .
if (name_checked) |

/* check if the line starts and terminates on an operatox */
if ({((sop=pick_operator(op_list,xl,yl)) I=NULL) &&
((dop=pick_operator(op_list,x2,y2)) I=NULL) && (sop = dop)) {
process line (DATA_FLOW,xl,yl,x2,y2, sop,dop) ;
)
)
elae {
display errxor_msg(5);
)
break;
case SELF_LOOP:
if (name_checked) |(
/* draw the loop if it starts on an object and is not */
/* intersecting an existing object */
if (((sop=pick_operator(op_list,xl,yl)) !=NULL) &&
{ (dop=pi.ck_operator (op_list,x2,y2))==NULL)) {
process_line (SELF_LOOP, x1,yl,x2,y2, sop, sop);
)
)
else |
display error_msg(5);
)

break;

158 ‘

IR IO PR SO WOUE PP ST

“b .

. case INPUT:
if (name_checked) {

/* check if line ends on an operator */
if ((tsop=pick_operator(op_list,xl,yl))==NULL) &&
((dop=pick_oparatox(op_list,x2,y2}} |=NULL})) (
process_line (INPUT,x1,yl,x2,y2,s0p,dcp);
)
)

else (
diaplay_erxxox_msg(5);
)
break;
case OUTPUT:
if (name_checked) {
dop = NULL;
/* check if line is valid »/
if (((sop=pick_operator(op_liat,xl,yl)) |=NULL) &&
({dop=pick_operator(op_list,x2,y2))==NULL)) {
processa_line (OUTPUTL,x1,yl,x2,y2, sop,dop);
)
)

else |
display_erxox msg(5);
)

bxeak;

default:
break;
)

. 159

draw_object (otype,x1,y1,x2,y2)
int otype,xl,yl,x2,y2;

called by: process_operator()
process_line()
redraw_diagram()
callsa: none

(
£float i, 2id,ymid,xcent,ycent;

int xncw.,ynew,xold,yold;

awlitch (otype) |
case OPERATOR:
xmid = (x2~x1)/2.0;
ymid w (y2~y1)/2.0;
xcent = x1 + xmid;

xold = x2;
yold = ycent;

xold = xnew;
yold = ynew;

)
break;

case DATA_FLOW:
pw_vectoxr (drawing_pw, x1,
break;

case SELF_LOOP:
pw_vector (drawing_pw, x2,
pw_vector (drawing_pw, x2,
pw_vector {drawing pw, x1,
break;

case INPUT:
p¥_vector {drawing pw, x1,
break;

case OUTRPUT:
pv_vector (drawing pw, xl,
break;

default; :
break;

160

/nnnnnnunnnnnngnaunquﬁnui\unnntntﬁtuﬁam\nhaaanaa/
function: draws object in the drawing space

/ﬂAQQAAtahaﬁQhﬂihhahhkﬁﬁﬁhhﬁiﬁhkhﬁﬁAatﬁﬂﬂﬂﬁak&iQaﬂﬂﬁﬁhhﬂﬂhﬁihﬁﬂﬁkhikth/

et PR

/* objecta center point on the acreen */

/* loop to draw the object */

for{li = 0.0; i <= 2 » PI; i » i + PX / 12) {
xnew = xcent + (xmid * coa{i)):;
ynew = ycent + (ymid * sin(i)):
pw_vector (drawing pw, xold, yold,

yi,

Y1,
Yz,
y2,

yi,

yl,

x2,

x2,
x1,
x1,

x2,

x2,

Y2,

Y2,
Y2,
yl,

Y2,

Y2,

ycent = yl + ymid; /* £ind position to start drawing the object ®/ ;

o ml

xnew, ynew, PIX SRC, 1); .

PIX_SRC,

PIX_SRC,
PIX_SRC,
PIX_SRC,

PIX_SRC,

PIX_SRC,

' rubber_ band({xl,yl,x2,y2)

int x1,yl,x2,y2;
/ll!ll.tt.ﬂﬁﬁt.ﬁﬂ'.‘ﬁﬂitﬂﬁ'!.tﬂﬂl!Ql.ﬁ.Q..Qi'!ﬂﬂ’i..ﬁl'!ﬁﬂ.ﬁﬁ.iil.l.....ﬁ..tl..

i A i Sl i

function: expands/shrinks selected drawing object 3
called by: process_canvas_eventa() '
calls: nonn

ntﬁtaaaanntttaaﬁtataadtﬁtn-ﬁaﬁuatntaﬁinia--taaianniﬁianaﬁahthttatiit-tiﬁﬂﬁatai/

(

e

switch(edit_mode) |
case OPERATOR:
pw_vector (drawing pw, x1, yl, x2, yl, PIX_NOT(RIX DST), 1);
pv_ ‘octor (drawing pw, x2, yl, x2, y2, RIX NOT(PIX D3T), 1);
pw_vector (drawing pw, x2, y2, x1, y2, PIX NOT(RIX DST), 1);
pw_vector (drawing pw, x1, y2, x1, yl, PIX NOT(PXX DST), 1);
break;
case DATA FLOM:
p¥_vector (drawing pw, x1, yl, x2, y2, PIX NOY(RIX_DST), 1);
break;
case SELY_LOOP:
pw_vactor (drawing pw, x2, yl, x2, y2, PIX NOT(PIX DST), 1});
p¥_vector (drawing_pw, x2, y2, xl, y2, PIX NOT(RIX DST), 1);
pw_vector (drawing_pw, x1, y2, x1, yl, PIX NOT(RIX_DST), 1);
break;
case INPUT:
pw_vector (drawing pw, x1, yl, x2, y2, PIX NOT(RIX DST), 1);

break;
case OQUTPUT:

p¥_vector (drawing pw, x1, yl, x2, y2, PIX NOT{PIX D3T), 1);
break;

dzfault: 3
break; 3

proceas_operator(otype,xl,yl,x2,y2) ‘
int otype,xl,yl,x2,y2;

/MmununaaannaAn\aaﬂqqnqqna-aaﬁaaaﬁAaaquaqa-ﬂa‘nthul\ugknﬂhnnnhnahibmﬂtnaai
function: checks the name and time conatrzaint, atoxes into data astrxucture
called by: process_objoct ()

drav_object () ;
calls: draw_object () :

get_time const ()

get_name ()

diasplay_tc{)

create_op ()

append_to_op_list ()
QQkﬁﬁﬁﬁﬁ&iﬁt'ﬁﬁﬁaiﬁlkaﬁtﬂnﬂﬂitﬁﬂﬁﬂQnihﬂﬂﬁﬁi:ﬁhithiﬁﬁ*k*ﬁh*atﬂﬁ%ﬂﬁthﬁhﬂﬂﬂﬁkﬁﬁhﬂﬁ/

{

Al aSiatata

Name *obj_name;
Time *tc;
Operator *op;

2 e,

draw_object (otype,xl,yl,x2,y2);
tc = get_time const();
obj_name = get_name();

display_name (obj_name,otype,xl,yl,x2,y2); 5
display te(te,xl,yl,x2,y2);]
op = create_op(obj_name,otype,x1,¥yl,x2,y2,tc); 3
append_to_op_list (op_list,op); ;
nsme_checked =~ 0; 1
time_checked = 0; ‘
)
4
14
E
:
1
7
4
!
4;:
} 3

C¥ AN N

o o

R

2,

AN PRyt

proceas_line (otype,xl,yl,x2,y2, sop,dop) 3
int otype,xl,yl,x2,y2; :
Operatorx *aop,*dop;

/Q!thﬂﬁ!hiﬂ!!QﬁQﬂﬁlﬂlﬁhhﬁitﬁttﬁﬂih.iﬂﬁﬁﬂiﬁﬁ*!.ﬂi'ﬁiihtiﬂiﬁiﬂ!ﬂﬁ.ﬁ.iii.ﬁﬂtﬁﬁtil 3

funiction: geats attributes and draws a line ‘

culled by: proceas_object ()
draw_objact ()

calls: draw_object ()
dxaw_arrowhead ()
get_time_const ()
external ()
create_op()
append_to_op list()
get_name ()
diaplay_name()
create_line() |
append to_op({)

'.itﬂﬂii.lﬁﬁﬁﬂ'!tﬂﬁiitittat.i.taﬁi'ﬂ'iﬂlQ'!..lﬂ.i'lﬂi.ﬂﬂiﬁ'ﬂ...!ﬁﬁﬁti'ﬂ...l./

(
Name *obj_name, *op_name;
Line *ln;

draw_ohi~st (otype,x1,yl,x2,y2);
if (otype == SELF_LOOP) :
draw_arrowhead (x2,y2,x2,yl);
else
draw_arrowhead(xl,yl,x2,y2);
if (otype == INPUT) {
tc = get_time_const();
op_name = external({):;
sop = create op{op_name,EXTERNAL,x1,yl,x2,y2,tc);
append_to_op_list {(op_list,sop);
)
obj_name = get_name();
display name(obj_name,otype,xl,yl,x2,y2);
ln = create_line(obj_name,otype,xl,yl,x2,y2,dop);
append_line_to_op(sop,1n);
name_checked = 0;

163 3

PRSI IRERY

Operatoxr *create_op (name,op_type,xl,yl,x2,y2,tc)

Name *name;

int op_type;

int x1,yl,x2,y2;
Time *ke;

/ﬁaniﬂwﬁiwﬁﬁﬁ**tttinttﬁlkiﬁ*ﬂﬁﬂ*ﬁ#iﬂﬁtﬂt**t#*ﬂ*ﬁtﬂ*ﬁkth#i*i*iiiﬁitﬂﬁﬂﬂﬂﬂ*ttﬂ#ﬂﬁ

function:

calls:

gets the storage required to store an operxatox or input by

calling alloc_operator. It then £illa in the operator with ita name,
cooxdinates, and time constraint.
called by: load proc{)
process_opexator()
process_line()

alloc_operator ()

khhk*it***ﬂikttﬂﬂ*kﬂﬂﬁﬂtkﬁtk*kﬁtﬁtiﬁ*iﬁ**itiﬁ*ﬁﬂitiﬁ**ktiﬁﬂﬁ*ﬁﬂiikﬁﬂ‘tiﬁﬁﬁhﬁﬁt/

{

Operator *new_op;

new_op = alloc_operator();
new_op=->name = name;
new_op->time_const = te;
new_op->head = NULL;
new_op->tail = NULL;
new_cp->next = RULL;

switch(op_type) {
case OPERATOR:

case EXTERNAL:

default:

)

return (new_op);

new_op->optype
new_op->xstart
new_op->ystart
new_op->xstop
new_op->ystop
break;

new_op->optype
nevw_op->xstaxt
new_op=->ystart
new_op->xstop
new_op->ystop
break;

break;

164

OPERATOR;
x1;
YL
x2;
Y2;

EXTERNAL;
0;
0;

.
!

’

Line *create line(nume,ln_type,xl,yl,x2,y2,dest_op)

Name “nama;
int in_type;
int x1,yl,%x2,¥2;

Operator *dest_op;
/ihﬁﬁhﬁﬁﬂ*ﬁikiﬁﬂ!ﬂﬁkﬁﬂiiiﬂiﬁ!iﬂhﬁlﬂtﬁﬂtﬁﬁh.iiiQiﬂiﬂQiiﬁﬁi*iitﬁiﬁ.‘.iﬁtititﬁtﬂ!l
function: gets the storage raquired to store a data flow line or an

output line by calling alloc_line. It then £ills in the line stxuct
with its name and coordinates.
callad by; load proc()
process_line()
calls: alloc_line()
external ()
ﬂﬁ!iﬁtlQﬂtiﬁﬂanﬁt.Q.iﬁhﬁtﬂﬁiitit!itlﬁitﬁﬁiﬁt.tittt*iﬁﬁﬁiﬁﬂitti.ﬁ...ﬂ‘itlﬁ.iiﬁ./

{

Line *new_ln;

new_ln = alloc_linef{);
new_ln->name = nama;
new_ln->xstart = x1;
new_ln~>ystart = yl;
new_ln->xstop = x2;
new_ln->ystop = y2;
new_ln->next = NULL;
switch (1n_type) {
case INPUT:
new_ln->lntype = INPUT;
new_ln->dest = dest_op->name;
break;
case DATA_FLOMW:
new_}n->1ntype = DATA_FLONM;
new_ln->dest = deat_op->name;
break;
case OUTPUT:
new_ln->lntype = OUTPUT;
new_ln->dest = extexnal():
break;
case SELF _LOOP:
new_ln->lntype = SELF LOOP;
new_ln->dest = dest_op->name;
break;

default:
break;

)

return(new_ln);

165

PR S Y |

delote_op (op_liat,cp)

Operatox_liast *op list;
Opaxatoxr *op;

/ﬁaanahn«anaa«aa«hﬁﬁaanﬁﬁuaﬁaatﬂﬁﬁtaQaata&aﬁnaaﬁahhiiniuhangtaaﬁanihthhkhianﬂﬂh

function:
atructure
called by: procesa_canvaa_events({)
delete_input_lines()
calls: delete_input_lines()

deletes operators from the drawing apace and the intsarnal data

ﬂﬁkﬁhh*niQnﬂnaﬂttﬂﬂﬁnﬁnﬁﬁﬁﬁhiﬂaiﬂﬁh*ﬁtnﬂliﬂhiihﬂhiﬂhiih-aihtﬂﬁﬂhllhﬁﬂﬁnhﬁﬂﬁﬂiﬁ/

(

Operxator *dptx,

*otemp;
Line tlptr,

*ltemp;
Name "n;

/* find lines which terminate on this operator and delete them */

n = op->name;
delete_input_lines{op_list,n);
otemp = op_liat->head;
3f (op l= otemp) {

while (otemp~>next = op) {

otewp =~ otemp->next;

)

dptxr = otemp~>next;

if (dptr=->next = NULL) {

otemp->next = dptr->next;

dptz->next = NULL:
)
else
otemp->next = NULL;
)
else (
dptr = op_list->head;
op_list->head = dptx->next;
)
if (dptr->head = NULL) {
ltemp = dptr->head;
lptr = dptr->head;
dptr->head = NULIL;

while (lptz~>next I~ NULL) ({

lptr = lptr->next;
ltemp = lptr;

)

lptr = NULL;

ltemp = NULL;

}
dptr = NULL;

166

/* put pointer at head of op list */
/* i3 the first op the one to delete? */
/* if not, find the one to delate */

/* unlink the op to be deleted */

/* the first one is the one to delets */
/* unlink the firat op */

/* does it have any aasoc lines ? */

"

n

bk

NPT

el

e s £

[EE TN

[ENCEE AN

PRI,

VR RRT Y Y R SR

‘ delete_input_lines(op list,n)
Opexator_list ¢cp _liat:

Name *n;
[Q!ﬂonQQQn-aooopqqanAttqoqqqqnaonoobln.Qoqaoaaqtqtaainu.talntl!nlﬁﬂh...ﬁlatatt
function: delates lines azasociatad with an operator when deleting opexators
called by: delete_op()
calls: delete_op{)

delete line()
.ﬁntin.t.lﬂ(!ﬂlln‘tﬂt.llQﬂ!ilﬂQn.laﬂﬂll!'!lﬂﬂll.ﬂn!ﬁll'll.liﬂﬂ.!.l.lﬂ...l.l.ll/
{
Operxatox *optr;
Line *lptx,
*ltemnp;

optr «w op_list->head;

while(optr l= NULL) | /* search the entire list of operators */
lptr = optx->head;
while (lptx I=~ RULL) { /* check wach line leaving each opexater */

if{latcemp (n->atring,lptr->dest-»atring)) |
ltemp = lptr->next;
/* found a line with the deatination searched for t/
delete_line (op_list,optr,lptr); /* 30 deleta it ¢/
/* if (optx=->optype == EXTERNAL) {
delete_op (op_list,optr);
) */

‘ iptx = ltemp;
)
else |

lptx = lptr->next;
)
)

optr = optr->next;

@ "

daleta_line (op_liat,op,1ln)

Opuxater_liast *op_liat; ‘

Opaxrator *op;

Line *ln;
JAARAAREIANRIARPARAALARARRRASRARRRAANARARARARARSRRRARALAARRAARARAAANARARANARR AN
function: xemoves line f£rom linked liat data atrxucture
called by: delete_input_lines()
calls: none
AARRRARARAARARARAAARRARARAARARAARRARASAAAARRRARRRARANAAARAARRAARARRAARARARANANR/

(

Operator *optr;

Line *iptr,
*ltemp;
int ln_found = 0;

1€(cp Iw NULL) {
optrx = op; /* start the search for the line at its source op */
lptr = optr=>head;
ltemp = lptr;
while (1ptz Iw 1ln) |
ltemp = lptr;
lptzr = lptr->next;
}
)

else | /* source op is unknown - f£ind the line */
optx = op_list->hend;
while((optr != NULL) && (lln_found)) ({
lptr = optx=~>head; ‘

ltemp = lptr;
while ((lptx != RNULL) && (lln_found)) ({
if (lptx =mw 1n)
In_found = 1;
else |
ltemp = lptr;
lptx = lptr->next;
)
)
i£ (1ln_found)
optr = optr->next;
)
)
/* unlink the line */
if (ltemp == lptr) |{ /* delete first line on list */
optr->head = ltemp->next;
lptr->next = NULL;
ltemp = NULL;
if (optr->head == NULL) { /* first line was the only line */
optr->tail = NULL;
}

else {

- ®

P S

K el o AN

if(lptr == optx->tail} { /* delete last line fxom the list %/

ltemp->next = HULL;
optx->tail = ltemp;

)

elae
ltemp->next = lptrg-=>next;
lptr->next = NULL;

}

optr = NULL;

169

/* delete a middle line from the list */

£ & AW q‘-\w&‘

e S @

iy

Operutox_list *op list;
int xpick, ypick;
JAPRARANRARAARARARRKARAARRANRAARRRARAARARARRRRAARRARARARRARARRRARRNRANAAARRAARA
function: daterminea if a data flow line or output line starts on an
operator, If the search for a source operator is successful, it
returns a pointer to that operator.
called by: process_canvas_events()
pProceas_operatox()
calls: is_op_pick()
ARRRAARARRRARRARAARARAARARRRARAARRARARRARAARAARAARRRANRAARAARANRRAARRRRAANARRAR/

{

Operator *pick_operator(op_list,xpick,ypick) ’

Operator #ptr;

for (ptx = op_list->head; ptr != NULL; ptr = ptr->next) ({
if (ptx->optype o= OPERATOR) { /* skip the null operators */
if (is_op_pick(ptx->xstart, ptr-dystart, /* teat for pick */
ptz->xstop, ptx->ystop, xpick, ypick)) {
return{ptr);

)

)
return (NULL) ;

°

int is_op_pick(xl,yl,x2,y2,xp, yp)
int x1, yl, x2, y2, xp, yp;
/ikitﬁﬂﬂﬁi*ﬂnﬂttﬂﬁﬂiiﬁﬂﬁﬂiﬁﬂﬂiiﬁﬂ*iﬁiﬂﬁiﬁﬁﬂﬁtt‘iﬂ!nﬂ.Qiﬁﬁiﬁiti..."ﬁiﬂﬁ*.i'l'i‘

function: determines if a pick has occurred within the bounds of an

operator,
called by: pick_operatorx()
calls: none

iﬂ*kitiﬁttﬂ***iiiﬁi*i*:\iﬁﬂtiﬂitﬂﬁﬁﬁﬁiiiiﬂﬂﬂﬁﬁtitllitiﬁiﬁiitiiiﬁﬁttitiﬂtiiﬁi.ti/

(

1f (((xp > x1) && (xp < x2) && (yp > yl) && (yp < y2) }|
((xp < x1) && (xp > x2) && (yp > yl) && (yp < ¥2))|
((xp < x1) && (xp > x2) && (yp < yl) &é (yp > ¥2))|
{ (xp > x1) && (xp < x2) && (yp < yl) && (yp > ¥2)))
return(l);

else
return(0);

L,

1

N ocrem g

P § SR

/AﬁhﬁhhlﬂﬂﬂhﬁilﬁlﬂQﬂklﬂ!ﬂﬁ!ﬂl!ﬁtﬂlﬂﬂ*"‘ﬂ*!ﬂﬂaiﬂﬂiiiiﬂﬂiﬂﬂﬁﬂRﬁ*lﬁ*ﬁiﬁﬁiﬂiﬂﬁi
function: determines iI a line object was picked with the mouse

called by: peoccas_canvas_events()

calla: is_line_pick()
tﬁ!Qﬂitﬁ*tﬂtiiﬂﬁ!lﬂ*tnkﬁﬂiﬂﬁtﬁﬂkk**!iQﬂ*ﬂﬁiliﬁﬁkiﬂﬂiiﬂﬁﬂihtiilﬂﬂﬁ*ﬁiiﬁﬁﬂﬁ.iﬁﬁﬂ/

Operavor_list *op list;
int xpick, ypick;

Line *pick_line(op_liat,xpick,ypick) ..

(
Operator *optx;
Line *lpte;

/% search each operator’s line list */
for (optr = op_list->head; optr != NULL; optr = optx->next) {
for (lptr = optr->head; lptr |= NULL; lptrx = lptr-~>next) {
if (is_line_pick(lptx->xstart, lptx->ystart, /* teat for pick */
lptr->xstop, lptr->ystop, xpick, ypick)) {
return{lptr);

}

)
return (NULL) ;

®

LTS S A NWFIP P LT

—

‘ int is_line_pick (x1,yl,x2,¥2,%p,yp) 3
int x1, yl, x2, y2, xp, yp: :
/'ﬁ.hhﬁtﬁ‘ﬁﬂtﬁﬂ'ﬁﬁﬁi\lQwwﬁiﬁiQQﬁﬁQiﬁﬁﬁ.ﬁQhkﬁﬁﬂikﬁﬁﬁ*t.ki*ﬂﬁi.*ﬁtﬁ'Qﬁﬁﬁﬁﬁiﬁhﬁﬁﬁﬂi P
function: determines if mousa is on a line
called by: pick_line()

calls: none P
ﬁﬁkﬁﬁﬁhﬁﬁﬁhﬁti#tﬂﬁiﬁﬁiﬁnhtkhﬁiﬁﬁiﬁiﬁﬁﬁﬁﬁ.**ﬁﬁﬁﬁii.ii..tﬁﬁ.itﬁiiitiﬂ.iﬂﬂtﬁﬁt.ﬁ./]
(R
if (((abs(xl-xp)+aba(yl-yp)) < PROXIMICY) {| f
((abs (x2-xp) +abs (y2-yp)) < PROXIMITY}) :
return(l);

else
raturn(0);

1 "N

AT

2 Livme s nirda

® s

ot L TS K L Sk A it sl

NS L S Pz

|ﬁ

append_to_op_list (op_list,op) ‘

Opexator_list *op _list;

Opexator *op;
/i!ﬂﬂﬁnkﬁb!Qtﬁiﬂ*&l&ﬁﬂiQatahﬂﬂhﬂAﬁﬂﬂakatiﬁQinéAiiﬁ*ﬁit*ttiitﬂﬁﬂ*ihttitiitﬁiﬂhlﬂ
function: adda new operators to linked list of operators
called by: load proc()

process_opexator{)
proceas_line ()

calla: none
tiﬁthlt!*ﬂﬂiilﬂnﬂiﬂitﬂ*n*itt*ﬂkﬂtﬂ!ﬂ*ﬁlﬁﬁlﬁitﬁittii!iﬂ*t#kﬁﬁﬂﬁﬂktﬁ*tttliltiﬁﬁﬂ/

{
if (op_list->head ==~ NULL) {
op_list->head = op; /* attach firat operator to list */
op_list->tail = op;
)

elae |
op_liast->tail-d>next = op; /* attach operator to end of list */

op_list->tail = op;

o ®

Py 7 ETINN

oo BT L

0 aba b S BT

PR

SR Y O D S S

P

append_line_to_op {(op,1n)

Opexator *op;

Line *ln;
/tinﬂanhﬁkﬁﬁtﬁtﬁﬂihhﬁnﬁﬁﬁaﬁ*ahiﬁQ*tnﬁtﬁiiﬁttiitthﬁtiitt!iﬁtﬂﬁﬁiiﬁﬁiititﬁiﬂtﬁﬁi*
function: attaches data flows, states, and outputs to link list of cperators
called by: load_proc()

process_line()

calls: nor.a
iiiiinkitaﬁtﬁ*ﬁt*ﬁtlﬁl*ﬂtittitﬁ&Qinﬁiﬁiﬁﬁﬁﬁﬁiﬂﬁi.itQiitQﬂ*.iﬁiii.iﬂtiiiti.ﬁiii/

{
if (op~>head == NULL) {

op->head = 1ln; /* attach fixst lino to list */
op->tail = 1ln;

)

else |
op->tail->next = 1n; /* attach to end of line list */
op->tail = 1ln;

178

o

2

i o s

o

Lawr Tt re L

NPT L)

LA e

SR S

LTTEON I RN

Cperator *alicc _opexator()
/aanaﬁapnunqwnnaannsuan«nanawnuaannaaaaahattat*tsﬁiﬁawnwa*tﬁntnnnaﬂtﬁthnttth

function: allocates dynamic atorage for coperatogrs thelr inputs
called by: create_op()

calls: none
*tﬂkakﬂnﬁkﬂ*ﬂﬂﬁﬂhﬂ*tkﬂi*n*ttiﬁanﬁiﬁ)iahhtﬁkﬁ#*ﬁt!ﬁ*tainﬁ*ihtﬁhﬂiﬂﬂn!tiﬁhhtiﬁtn/
{

Operxator *op;

op = (Operator *)malloc(sizeof (Opexator));
return{op);

®

B N 3o T JEL LR, SN e, GRS S S S

IR T

R TR S TOER' 2

BN YWY

RSS2

b WPRA

e TR

Line *zlloc_line()
/lﬂﬂﬁlﬂ&Qailtt.nﬂ!Qﬁ!!ﬂﬂtnkﬁiﬂﬁﬂl*Qtﬁtuﬂitll.llﬂtﬂﬂt!iﬁﬁiﬂlﬁﬁltilﬂ*ﬂﬂlﬂki.ﬂﬂaﬁi
function: allocates dynamic stoxage for data flows and outputs of an operator
called by: create_line()

calls: none
Q'thﬂ*tQﬂﬁtii*tﬂﬁﬁﬁlieﬁtlﬁ.il!aﬁnitiﬂtﬁaiﬂﬁittttﬁiﬂ.ﬂﬂﬂQiiﬂieﬁ'tﬂiﬁﬂitﬁiti.iﬁti/

{

Line *ln;

ln = (Line *)malloc(sizeof{Line));
xeturn(ln);

177

input_text (item, value, event)

Panel_item item;

iat value;

Event tagvent;
/iﬂnﬁﬁﬁiﬁ*tnﬂﬁwﬂnnﬂhhﬂhi*ﬂhﬁﬁiﬁ‘iiﬁﬁatﬁki*ﬁﬂtﬁ*t#inﬂﬁﬂiikhi*ﬂhi(ii*ﬁkii!iﬂtt*il
function: reads the namea from the name panel
called by: notifier when entering an object identifiexr name
calla: is_valid_ada_id{()

display_exzox_mag()
ﬂkﬁﬂﬂtﬁhkﬂ*ﬁﬂﬂi!ﬁtﬂiﬁﬂRﬁlﬁﬂﬁ*ﬁ!kﬂiaitﬂﬂ*ﬂh#!ﬁﬂﬂ*tﬁ**ﬂ#uﬁihﬂikﬂﬁiiﬁﬁﬁﬂhﬁ.ﬁﬁkith/

{
tmp_buf = malloc(80);
/* initialize the storage */

tmp_buf(0) ~ ¢ /;
strcpy (tmp_buf, (char *)panel get_value(object name));
/* check to see if the name is an ada identifier »/
if (is_valid_ada_id(tmp_buf)) {

display_errox_mag(l);

name_checked = 1;
)
else

display_error_msg(2);

178 .

R R

display_error_msg(msg_id)
int mag_id;

/unnﬁﬁ-nnaanan-n-annna-nnnnuanuﬁatttaﬁunnnnununttnnunawtnn-tnnﬁu-nnnnﬁnantauﬁa-
function: diaplays warnings and exror messages in the message panel
called by: process_object ()

input_text ()

input_time()

quit_proc()
callsa: none
*ﬂiitﬁlhﬁﬂﬂtﬂﬁiﬁﬂﬂiiiﬂi*iﬂ!titﬁﬁni.Qﬁ‘htRiﬂtﬁi.ﬁﬂ!ki.QQ.Qitt!.ttliiﬁﬁ..l'.ﬁiﬁﬂ/

{

char *mag;

msg = mxlloc{6l);
switch(msg_dd) {
case 1:
msg = " MESSAGE PANEL: ",
break;
case 2:
msg = " MESSAGE PANEL: SYNTAX ERROR in ADA identifier "
break;
case 3:
msg = " MESSAGE PANEL: SYNTAX ERRCR in Maximum Execution Time "2
break;
case 4:
mag = ® MESSAGE PANEL: ERROR -~ Either NAME orxr TIME not read ":
break;
case 5:
msg = " MESSAGE PANEL: ERROR - NAME not xead b}
brezk;
case 6:
mayg = " MESSAGE PANEL: WARNING - The graph has not been stored! ¥;
break;
default:
break;
)
window_set (message_panel,C); :
panel_set (message, PANEL_LABEL_STRING, msg, 0); 3

17 !

Name *get nawme{) '
/%aaahﬁahﬁﬁ0QﬁﬁnnuﬂnﬁﬁﬂtttﬁinhbaQﬁituﬁﬁﬂiﬁﬂﬁﬂﬂ*!ﬂ!ﬂaiﬁﬁﬁﬁﬁtﬁﬁhﬂnﬁﬁhﬁﬁﬁﬂiﬁti!
furiction: creates a dynamic name structure
called by: procesa_operator()

process_line()
calls: none
\\Aﬂﬂ&nﬁAunhtl\Adﬂntﬁhﬁaﬁﬁkﬁ#ﬁQ*QAhtﬂv*nﬂkﬁl*iﬂaiﬂﬂiﬁ*ithhﬂt‘ktkh!ﬁﬁk!tﬂi*h!tﬂﬁﬁt/

{
Name *n;

n w (Nama *)malloc(aizeof (Name));
astz.py (n=>scring, tmp_buf);
n->length = atrlen{n->atxinyg);
xeturn(n);

®

R ottt AN it 4120 Y s T Dera X

L

St

P

PR

L NLEY

R

ETNN TR

ot ke

o

1 ndics Amld

Ey

VL P RO TR Y

L RP S IWAPTRIRE FE N B LU PV

A L

P

display_name (n, otype, x1, 1, x2,y2)
Nama 4n;
int otype,xl,y},x2,y2;
/oqacn-aco.ooc«ecgon.ltﬂhntlQl\lﬁﬁqtntd.ﬁl't!ﬁis\lQnﬁ*iﬂﬂtﬁtﬁ,ﬂitﬂ.ﬂ’.t&'tﬁhﬁt.'!*'
function: diasplaya the name of the object which the user has drawn.
“iperator names are centered within the opexatox, data flow line
nomea ataxt above the center of the line, input names staxt above
the initial point of the line, and output names atart at the end
of tha output line.
called by: process_cjaratox()
proauaa_linel)
radravw _diagram()
calls: nonec
.hiQinadaﬁiﬁﬂﬂnatlahlGQ!ﬁﬁ#Q&GQQQﬁQ*Qﬁﬁ&Q.QAlQQﬁﬂQaCiQQqQﬂlﬂlﬂﬁﬁ!ﬁhﬁﬁ‘dﬁiiﬁik*{

{
float xcent,ycent;

xecent = %l 4 ((x2 - x1) /7 2.9);
yaent = ¥yl + {({y2 - y1) / 2.0):
switch{otype) |
caase OPERATOR:
xcant = x} + (({x2 - x1) / 2.0);
ycent = yl + {({y2 - yl) / 2.0);
pv_text (canvas_pixwin (drawing_canvas),
(int)xcent~{ {(n=->length) /2) *8,
lint) ycent+S, PIX_SRC,NULL, n ->stxing);
break;
case INPUT:
pw_text (canvas_pixwin({drawing canvas),xl,yl,PIX SRC,
NULL, n=>string);
break;
case QUTFUT:
pw_text (canvas_pixwin{drawing canvas),x2,y2,FIX_SRC,
NULL, n=->satring) ;
break;
case DATA_FLOW:
xcent = (x2 - x1) / 2.0;
ycent ~ (y2 - yl) / 2.0;
pv_text {(canvus_pixwin(drawing cunvas),xl+{int)xcert,
yl+({int)ycent,PIX_SRC,NULL,n->atzing);
break;
case SELr_LOOP:
xcent = x1 + ((x2 - x1) / 2.0);
pw_text (canvas_pixwin{drawing_canvas),
{int) xcent~((n->length) /2) *8,
{int)y2-7, FIX_SRC,NULL,n->stxing);
break;
default:
bhraak;

181

int is_valid_ada_id(tmp_buf)
char tmp buf(80);
JESPAAARGARMRLLIANAAGARRIARSAARARRARAGARARAAARARRAAAARAARARRAAAAARARARAAARAARR
function: chacka to aae if a namo i3 a legal ada identifier

called by: input_text{)

calla: nona
ANRGOAARPOANARAARASRNARRRARARAARARRRARRRRAARRARARAARARARAARRARRAAARAARRARRARRARR/

{
int space_found = 0;
int L= 1

if (iaalpha(tmp buf£{0))) {
while (L <= atrlen{{char ")tmp buf) - 1} {
LE (Ylagraph(tmp_bafii))) |
space_found =~ 3;
1 =4+ 1
)
clae {
L£(((dsnlnum(tmp_buf{i})) | (tmp_buf(i}==*_*))&& | (space_found))
L= L4
clae
return {0}
)
) ;
return{l);
H

clae
return (0);

RSN

ddisldic

182

thaa 4

Y

input_time(item, value, event)

Panel item item;
int valae;
LEvent tevent;

/!ﬂtt!ﬂtﬂﬂﬁﬁﬁiﬂ!ﬂﬁﬂ'#ﬂ!ﬂﬂﬁ'ﬂﬂ!l'ﬁﬂ*QtiitﬁﬂiﬂQORﬁi*ﬁﬁﬁi*ﬁﬁii*ﬁﬁﬂﬁ!ﬁiﬁ*ﬁkﬁﬁﬁﬂﬁiﬁ!
function: gets and checks time constxainta
called by: notifiesx
calls: display_exror_msg()
iz _valid_time_const ()

lnﬂtlﬂ!nlﬂQ*lﬁtRﬂittﬁlﬂllﬁﬂi!ﬂ'ﬁ!ﬂﬂﬂﬂ!tlll'tﬂ!lﬁﬂ!ltﬂtﬂttiﬂﬂiltﬁlﬁlﬂﬁttiﬂﬁiﬁt'/
{
tmp_bufl = malloz(12);
tmp_bufl (0] = ¢ *;
stxcpy (tmp_bufl, (char *)panel get value(time constraint));
if (is_valid_time const (tmp bufl)) {
display_erxox mag(l);
time_checked = 1;
)
else
display erxxor msg(3);

183

int is_valid time_conat (tmp_bufl)

char tmp_bufl(12}); .
/Al\ﬂlﬂﬂﬁhkahﬂﬂﬂlﬁ‘ﬂﬂﬂﬂhuﬂARﬁhhltntRﬁﬁi*ﬁtﬂﬁﬂﬁﬁRRuﬂﬂkﬂhnt*ﬂ*ﬂﬁﬁhﬂ*ﬁﬂkﬂﬁ*iﬂltlltu
function: checks ayntax for time constxaint
called by: iaput_time()
calls: nane
ﬁnnuﬂﬂﬁﬁttﬂtﬁkﬂhnulﬂsntﬁﬂﬁ!u!ﬁﬂ*tﬁ\kli‘ﬁk*ﬂﬂﬁi!ﬁﬁ!ﬁtﬂRﬂiﬁﬁ!!ﬂl**!kﬂﬁﬂﬁﬁﬁ!ﬁ\!ﬂlﬁ!t/

{
int nondigit_found = 0;
int lettex_prev_found = 0;
int mfound = 0;
int ufound = 0;
int done = 0;
int & = 1;

if (isdigit (tmp_bufl(0)})) (
while (i <= strlen((chax *)twp_bufl) -~ 1) {
if (lisalnum(tmp_bufl{i})))
return{0);
else |
if (isdigit(tmp_bufl(i))&&inondigit_found)
i=4i+1;
else |
if (isadigit (tmp_bufl(i)))
retuzn{0);
else
nondigit_found = 1;
switch({tmp_bufl(i})) (
case ‘u’: if (llettex prev_found) {
ufound =~ 1;
letter_prev_Zfound = 1;
i =31i4+1;
)
else
xeturn(0);
break;
case ‘s’: if (lletter prev_found) |
letter_prev_found = 1;
1 w31 +1;
)
else |
if ((ufound||mfound)t&!done) |{
done = 1;
=4+ 1;
)
else
return(0);
}
break;
case ‘m’: if (lletter prev_found) ({
mfound = 1;

2 @

lettex_prev_found = 1;

L=41+1;
)
else
return(0);
break;
default : xeturn(0);
break;

)
)
if ((ufound&&ldone) || (Inondigit_found))

return(0) ;

)
¢lae
xeturn{0);

185

Time *get time_conat ()
/Anm«nann&hAnqnAnaMuManMu\annaﬂkunan*nAtnAMaaM*nnnnaktﬁkat*nnunnﬁnnﬁnn
function: createa initial time atrxucture for objects
called by: process_operatox()
procesa_line()

calls: none
ARAARAARRRARARARARARRRARARAARAARARARARARARARARAAARNAAARARARRAARRARARARRRARARARRA)
(

Time *tc;

/* get storage for the time constraint */
tc = (Time *)malloc(sizeof(Time)):
awitch (edit_mode} {

case OPERATOR:

stxcpy (tc->stxing,tmp_bufl); /* assign input stxing */

tc->length = strlen(tc->atring); /* find length of the string */
break;

case INPUT:
strcpy (tc->string, "0s“);
te->length = 2;
break;
default:
break;
)

return(tc);

°

display_tc(tec,x,yl,x2,y2)

Time Ate;

int x1,yl,22,y2;
JARRARRARAARRAARKAAAARAAARARARRARARARAANARARAARRAAAARARARARRARARAAAAARARRARAAAAR
function: displays time constraint in the drawing space
called by: proceas_uvperxatox()

redraw_diagram()

calls: none
ARARSAARARARARARARAAARARARARARARARRRARARARARARARARKRARARARARANRARRANRARARKRARAL/
{

float xcent;
xcent = x1 + ((x2 - x1) / 2.0);

pv_text (canvas_pixwin(drawing_canvas), (int)xcent-((tc->length}/2)*8,
{int)yl-5,PIX_SRC,NULL, tc->atring);

187

tiame *external () ‘
/Aknahnhﬂ‘ﬂ*ﬁikh:\kﬂﬂﬁﬁi*ikkﬂtAﬁii**kh*ﬁiﬁikhﬁﬁhi*kﬁh*ﬁkﬁﬁtﬁ**iﬂiﬁﬂiﬂﬁﬂti*iﬁﬁ
function: raturna the name "EXTERNAL" whenever it ias called. It ia
used to provide the names for the souxce of input lines and
deatination of output lines.
called by: create line()
proceas_line()
calla: none
ikﬁtkhﬂhﬁkﬁtk*ﬁﬁkﬂiﬂi**ﬂ*ktﬁﬁﬁ*ﬁtﬁiﬂtﬁ*ﬁﬁ*ktﬁ*tﬁﬁﬂkhﬁiﬁﬂiiRkt**ﬁﬁﬂ**ﬁﬂiﬂﬁﬂﬁﬂ*t/

{

Name *n;

n = (Name *)malloc(sizeof (Name)); /* alloc storage */
strepy (n=>stxing, "EXTERNAL") ; /* asasign name */
n->length = 8; /* assign name */

return{n);

188 .

. create_PSDL()
/ﬁﬂﬂﬂﬂiﬂﬂﬂﬂktRti‘ﬁﬂhﬂiﬁtiﬂtikﬂ*ﬂﬁﬁﬁl*!n!lﬂiitiﬁi!ﬁﬂinﬁ.ﬂikii!!ﬂQﬂ!li'*iliiﬁiﬁiﬁlﬂ

function:

called by:
calls:

{
Line
char
chax

char
char

)
)

creates the PSDL stateinents represented by the usex’s data

flow diagram. A PSDL statement of the form
output_line_name.source_name[:time_constraint]}->destination name
will be constructed from the information contained in the operxator
list,

store_proc()

none

tﬂiﬁﬂhkﬂﬁkﬂkﬁﬁﬁﬂﬂ*ﬂﬂiﬁhﬂhﬂﬂﬂﬁt*tﬂ&ﬂhtkitﬁﬁti!ﬁkﬁtﬁtﬁﬂkﬁ*ﬂﬁiﬁ&ttitﬂiit*itiiﬁnﬁh/

Operator “op ptx;

*output ptx;
‘padl;

tpariod w ", %;
Acoion w “:i%e
rarpow = M=%,

£ = fopen("/n/suna2/work/caps/prototypes/graph.linka®,*w");
psdl =« malloc{270);
psdl(0] = 7 %3

op_ptxr ~ op_list->head; /* point at head of the opexator list */
while (op_ptr Is= NULL) (
ountput_ptr = op_ptr->head; /* point line ptr at head of line liat®*/

while {output_ptr != NULL) {

/* assemble the psdl statement by concatenating the paxts of the
PSDL statements together */
psdl = strcat (psdl,output_ptr->name->stxing);
psdl = streat (psdl,period);
psdl = strcat (psdl,op ptr->name->string);
padl = strcat (psdl,cclon);
if ((op_ptr~>optype == OPERATOR) &&
(op_ptx~>time_const->string l= "0s%))
padl = strcat (psdl,ov _ptr->time_const->string);
psdl = strcat (psdl,arrow);
psdl = astrcat (psdl,output_ptr->dest->string);
fprintf (£, "As\n",pudl); /* store link stmt in file */
psdl{0] = 7 ?; /* reinitialize */
output_ptr = output_ptr->next;

op_ptx = op_ptr->next;

fclose (£);

189

stoxe_diagram()
/annﬁsa*aanknannﬁhanhak*atanuﬁhunanﬁﬂaauﬁﬂLaﬂnnﬂﬁﬁninuﬁuunnﬂncntaﬂaﬁntiﬁantﬁ
function: writes the cuxrent prototyps design to a file
called by: stoxe procl)
calls: none
ARARAARRARANRARARARSAAAARARRAKRRARARARRARARAAARARRAARRARR AR ANARARRSAARANARRRARANSD /
{

Opexator *op_ptr;

Line *ln_ptx;

g = fopen("/n/auna2/work/capa/prototypes/graph.pic®, "w"®);
op_ptx = op_list->head;
while (op_ptx != NULL) (
fprint£ (g, "8vd\n%,op_ptx->optype);
fprintf (g, "%d\n",op_ptr->xatart);
fprint£ (g, "8d\n",op_ptr-d>ystart);
fprint£ (g, "sd\n",op_ptx->xatop);
fprint£ (g, *¥d\n", op_ptx->ystop):
fprintf (g, "¢s\n",op_ptr->name->atxring);
fprintf (g, "$s\n",op_ptr->time_conat->string);
ln_ptr = op_ptr->head;
while (In_ptr I= NULL) {
fprint£{g, "8d\n", In_ptrx->lntype);
fprintf (g, "%d\n", ln_ptr->xstaxt);
fprintf (g, "8d\n", ln_ptx->ystaxt);
fprint£ (g, "8d\n", ln_ptr->xstop);
fprintf (g, "sd\n", ln_ptr->ystop):
fprint£ (g, "¥s\n", ln_ptr->name->string);
fprint£ (g, "8s\n", ln_ptr-d>dest->string);
In_ptr =~ ln_ptr->next;

)

op_ptr = op_ptx->next;
H
fclose(g) ;

190

redraw_dlagram()
JARRPARARANRAAGAIRARARARAAAARRRAAARARRANANSARANANARARARAARARARARERARARRACARSARSAA

function: redraws the diagram in the drawing space
called by: load pxoc{)

process_canvas_events!)

calls: draw_object ()

display_name ()
display_tci)
draw_arrowhead()

iﬂﬁﬁﬂﬂﬁﬂtﬂ*ﬁiiﬂiiﬂ*niﬂtihwikﬁ‘ﬂniﬁhiﬂiiﬁﬁﬁﬁitﬂﬁ0iﬂ*Qiﬁﬁﬁﬂﬂﬂﬁﬂitiﬂ.ﬁﬂ'ﬁiittlﬂﬁﬂ/

{

Operator *op_ptx;
Line *ln_ptx;

pw_writebackground (dxawing_pw, 0,0,
window_get (drawing_canvas,CANVAS_WIDTH),
windgst_get (drawing_canvas,CANVAS_HEIGHT),
PIX_SRC);
op_ptr = op_list->head;
while (op_ptr != NULL) ({
i£ (op_ptr->optype == OPERATOR) |
draw_object (op_ptr~>optype,op_ptr~>xataxt,op_ptr->ystart;
op_ptx->xstop,op_ptr->ystop)};
display name {op_ptr->name,OPERATOR,0p_ptr->xstaxt,
op_pt:—)ystlrt,op_pt:->xatop,og"pt:->yltop);
display tc(op_ptr->time_const,op_ptr->xstart,op_ptx->ystart,
op_ptr->xstop,op_ptr->ystop);
)
in_ptr = op_ptr->head;
while (ln_ptr = NULL) {
draw_object (ln_ptr~>lntype,ln_ptr->xstact,ln ptx->ystart,
In_ptr->xstop,ln_ptx->ystop);
if (ln_ptr->lntype == SELF_LOOP)
draw_arrowhead {ln_ptr->xstop,ln pt=~>ystop,
In_ptrx->xstop,ln_ptr->ystart);
else
draw_axrowhead (ln ptx->xstart,ln ptr->ystart,
In_ptr->xstop,ln_ptr->ystop};
display name (ln_ptr->name,ln ptr->lntype,ln ptrx->xstaxt,
ln ptr->ystart,ln ptr->xstop,ln_ptr->ystop);
ln _ptr = ln_ptr~>next;
)
op_ptrx = op ptr->rext;

191

draw_arxzowhead (x4, yi, %2, y2)
int x), y1l, %2, y2;
/ﬁQ9!COQ‘C!C‘0‘l"!'QQ!Q‘C.Q‘Q‘ﬂl!iG.QQ!A‘!QA!‘!!!SQG!il‘!l!!ﬁi.Q.‘ﬂﬁh!QﬂQ!QQ

functioan: drawsz an arros head at the end of & line at the appropriaste angle
called by: process line() ,
redraw_axzowhaad() ‘
calla: nong
Ql'ﬁl.IIllIDGQD!&GQIOCGQQIl&!lﬁﬁkﬁﬁﬂﬂﬁilﬁ!llﬂﬂqlﬂlﬂﬂtﬂlﬂllﬂiﬂlﬂilnﬁﬁﬂllﬁ‘ﬁ!lﬁ.,
{
int x1_r sna, yl_trans, x2 trans, y2_trans;
int xph yptl, xpt2, ypt2,
xp trans, yptl_trans, xpt2 trans, ypt2 trans;
double le: 1\, ctheta;

/* tranalate the line to the origin ¢/
x1_trans = xl - x2;
yl_trans = yl - y2;
/* £ind the length of the line */
length = aqrt (pow((double)x)l_trans,2.0) + pow ({double) yl_trans,2.0)}:
/* £ind the angle between the line and the x axia */
theka = acos ((double)xl_txans/length);
/* calculate the coords of the points of the arxowhead */
xptl = ARROW_LENGTH * cos(theta + PX / 6.0):
yptl = ARROW_LENGTH * sin(theta + PI / 6.0);
xpt2 = ARROW_LENGTH * cos(theta = PX / 6.0);
ypt2 = ARROW_LENSTH * sin(theta - PX / 6.0);
/* reflect y coords across x axis if yl trans {a negative */
if (yl_trans < 0) {
yptl = -yptl:
ypt2 = -ypt2;
)
/* translate the coords of the arrowhead out to the posit of the line */
xptl_trans = xptl + x2;
yptl_trans = yptl + y2;
xpt2_trans = xpt2 + x2;
ypt2_trans = ypt2 + y2;
/* draw the point of the axrow */
pw_vector (drawing_pw, xptl_trans, yptl_trans, x2, y2, PIX_SRC, 1};
pw_vector (drawing_pw, xpt2_trans, ypt2 trans, x2, y2, PIX_SRC, 1);
pw_vector (drawing_pw, xptl_trans, yptl_trans, xpt2 trans, ypt2_trans,
PIX_SRC, 1);

APPENDIX E LINK STATEMENT ANALYZER ’

(# mmnn ---

Program: nodes.p
Authox: Hank Raum
Last Modified: 9 December 89 by Lauxa J. Mhite

- - l)

program CreateNodes (input,output);

const (* Global Constants =)
period = ’.¢;
colon = /34
ATXOW = f=/;
blank = ¢ ¢;
EXTERNAL = ¢EXTERNAL

type
string80 =~ packed arrxay {0..79) of char;
DataPtx = “DataType;

DataType = recoxrd (* Node for Linked List %)
‘ Name: atxing80; (* of Nodea *)
Link: DataPtr;

end; (* DataType *)
OpexPtr = “Opexator;

Operator =~ record (* Node of Linked List of Operxators %)
OpName: string80; {* Operator Name *)
InputList: DataPBtyx; (* Head Pointer to Input List *)
InListTail: DataPtx; (* Tail Pointer to Inmput List *)
OutputList: DataPtr; (* Head Pointer to Output List *)
OutListTuil: DataPtx; (* Tail Pointer to Output List «}
StateList: DataPtr; (* Head Pointer to State List *)
StatelListTail: DataPtr; (* Tail Pointer to State List *)
MET: strxing80; (* Maximum EZxecution Time *)

Link: OpexPtr;
end; (* Operatoz *)

var
OpHead: OperPtr; (* Head of Operator List *)
OpTail: OperPtr; (* Tail of Operator List *)
DataHead: DataPtr; {* Head of Data List *)
DataTail: DataPtr; (* Tail of Data List *)
(*- ——- ") .

‘ 193

proceduce ReadToken(delimetex:chax;
var token:string80);

(* Reads PSDL Link statements from standmra input, one token at *)

(* a timo. Delimetexs axe: period, colon, arxow and End of Line %)

var
ndx:integer;
ch: charx;

begin
ndx i 0; (* initialize *)
read {ch);
while (ch <> delimetex) and {(not eoln) do
begin
token[ndx] := ch; (* Gets token charactex by character *)
read (ch); {(* until delimeter or eoln *)

ndx = ndx 4 1;
end; (* while*)
if eoln then token(ndx) := c¢ch; {n Gets last character before *)

if delimeter = axrow than (* end of line *)
begin
read (ch); read{ch); (* remove reat of axxow *)
end; (* L£ *)

if eoln then readln; {* resets line *)

end; {* ReadToken *)

S — . : e

. prxoceduxe ReadOperMet (var Qperl, Met: string8Q);

{* Reads PSDL Link atatements from standaxd input, one token at *)
(* a time. Determines Operxatorl and Maximum Execution Time *)

var
ndx:integex;
ch: char;
hegin
ndx = 0; (* initialize *)
xead (ch);
while (¢h <> colon) and (ch <> arrow) do
begin
Operl(ndx) := ch; {* Gats token character by character *)
xead {ch); {(* until delimeter ox oln @)

ndx := ndx + 1;
end; (* vdilen)
if ch = colon then (* end of line ®)
begin
ndx := 0;
xead (ch) ;
while ch <> arrow do
begin
Met (ndx) := ch; {* Gats token by charactex *)

xead (ch) ; (* until delimetexr or eoln %)
g ndx := ndx + 1;

end; {* while*)
end; (x if »)
read(ch); read(ch); (* remove reat of arxow *)
end; {(* ReadToken *)

(x - *)

® s

function OpSearch (ilead: OperxPtr;
Taxget; atring80): OperPtx; ‘
(¢ Seaxches Opexator List for Target atring, returns pointer ®)
(* to taxget if found, otharxwise NXL *)

beglin
if Head = nil then
OpSearch := nil (* empty list *)
elae if Head”.OpName = Taxget then
OpSearch := Head (* target found *)
elae

OpSearch :» OpSearch{lead".Link, Taxget):;
end;

(*~- - ——— ——— —ﬂ)

196

‘ procedure OpAdd (var Head: OperPtx;
var Tall: OperPtr;

Target: atring#0);
(* Adds new Operator to end of linked liat =)

var
p: OpexPtr; {(* temp pointer *)

begin

if Head = nil then {(* List ias empty *)
begin
new(p); (* Cxeate nex head noda *)
Head := p;
Tall := p;
p~.OpName := Target; {* Initialize new liast «)
p~.InputlList := ni);
P~ .InListTail := nil;
p~.OutputList := nil;
p".OutListTall := nil;
p-.Link := nil;
end (* if *)

else {(* List not empty *)
begin
new(p): {* Add new node after tail *)

Tail”.Link := p;
‘ Tail :» Tail".Link;

p~.OpName := Target; (* Initialize new lists *)

. p~.InputList := nil;
p~.InListTail := nil;
p~.OutputList := nil;
p-.OutLiatTail i= nil;
p~.StateList := 2i);
p~.SteteListTail := nil;
p~.DLink := nil;
end (* @lse *)

end; (* OpAdd *)

(* - *)

g

function Seaxch (Head: DataPtr;
Taxget: atring80): DataPtx;

(» Searches Data Listfor Target string, returns pointer
(* to target if found, othexwise NIL *)

begin

if Head = nil then

Seaxch :w ni)
elae if Head” . Name = Target then

Seaxch :» Head

elae

Seaxch := Search(Head®.Link, Target):

end; (* Search #)

{* enpty list *)

{* taxget found *)

198

*)

procedure Add (var Head: DataPtr;

var Tail: DataPbty;
Target: atring80),;

(* Adds new Data to end of linked lists n)

vax
ps

begin
if

DataPbPtx;

Haad = nil then
begin

new(p):

Head := p;

Tail := p;

p".Name := Target;
p".bLink := ni};

end (* ig =)
elae

end;

begin
new (p) ;
Tail",Link := p;
Tall := Tail®.Link;
P~ .Hame (= Target;
p-.Link = nil;
end {* eise *)

(* OpAdd *)

(t

(ﬁ
(Q

(Q

(~
(.

(t

Temp pointex #)

List is empty *)

Create new node %)

Initialize new liats *)

List not empty *)

Add new ncde after tail *)

Initialize new lists *)

(R

199

*)

procedura LoadDataStructure (var OpHead, OpTail: OperPtr;
vaxr Datatlead, DataTail: DataPtr);

{* Loads tokena into Data Structurxes *)

var
Curxent: OperPtr; {(* Temp polnter *)
Data, Met: atrxing80; {* ESDL Tokena *)
Operl, Oper2: string80;

begin
Data := blank; (4 Initialixe Strings ®)
Oper) ;= blank;
Met :w= blank;
Oper2 := blank;

while not eof do

begin (* Get tokens *)

ReadToken (pexiod,Data);

HKeadOperMet (Oparl, Met);

ReadToken (! /,0Oper2);

3£ Opexl <> EXTERNAL then {* Keyword EXTERNAL is not ")
begin {* an Operator *)

(nrnenananann segv on next statement RARKRAARRAR)

Current := OpSeazrch(OpMead,Operl);
if Cuzrent = nil then

begin {(* Add Operatox 1 =)
OpAdd (OpHead, OpTail,Operl);
Current := OpSearch (OpHead,Operl);

end; (» if »)

Current™ .MET := Met; (* Enter Maximun Execution Time *)
(* Add Data to Operators Output List *)

if Operl = Oper2 then

begin

if Search(Current”.StateList,Data) = nil then

Add (Curxent".Statelist,Current”.StatelListTail,
Data);

end
else

if Search(Current”.OutputlList,Data) = nil then

Add (Curxent”.OutputList,Current”,.CutListTail,
Data};
end; (* 1€ %)
if Oper2 <> EXTERNAL then {(* Keyword EXTERNAL is not #)

begin (* an Operator *)
Current := OpSearch (OpHead,Opexz2);
if Current = nil then

begin (* Add Operator 2 *)

OpAdd (OpHead, OpTail,Oper2) ;

Current := OpSearch (OpHead,Oper2);

end; (* if %)
. ®

(Q

end;

(* Add Data to Oparators Input Liat *»)

if Opexrl = Oper2 then
begin
if Search(Current".StatelList,Data) = nil then
Add (Current”.StateList,Current”,StateListTail,
Data);
end
else
if Seaxch(Currxent™,InputlList,Data) = nil then
Add {Cuzrent”.Inputlist,Curxent”.InListTail,
Daca);
end; {* if V)
(* Enter new intexnal Data Streams in Data List %)
if ((Operl <> EXTERNAL) and (Opex2 <> EXTERNAL)) and
(Opexrl <> Oper2) then
3£ Seaxch(DataHead,Data) = nil then
Add{DataHead,DataTail,Data);

Data := blank; {(* Reaet Strings *)
Operl := blank;
Met := blank;
Oper2 := blank;
end; (* while *)
{* LoadDataStrxucture *)

*)

201

procedure WriteString({var rile:text; Str: stringb0);

var
ndx: integer;

begin

ndx := 0;

while Str(ndx) <> ¢ f do
begin
write (File,Str{ndx));:
ndx :w ndx + 1;
end; {* while ®)

end; {* WriteStxing *)

202

procedure MakePSDL ({Heac DperPtrx);

(* Genexatas paxtial eSDL Specification for each new Operxator *)
{* in the Graphical decomposition *)

type
atring42 « packed arrxay (0,.41) of char;
varx
Curxrent: OperPtrx; (* Temp pointers #)

InTemp: DataPtr;

QutTemp: Dataktx;

StateTemp: DataPtr;

Qutrile: text;

NodeName: atring42; {* Unix file name *)

begin
Current := Head;
NodeName := ‘/n/suna2/work/caps/prototypes/NewNode.01’;

while Current<> nil do
begin
rewrite (OutFile,NodeName): (* Create new file *)
(* output PSDL *})
write (Out¥file,’/OPERATOR ‘)
¥riteString (OutFfile,Curxent”.OpName);
writeln(Outrile);
writeln (Outrile);
writeln(Outrile,’ SPECIFICATION');
writeln (Outrile);
InTemp :=~ Current™.InputlLiat;
if InTemp <> nil then (* Generate Input list *)
begin
write (Qutrile, INPUT *);
WriteString (OutFile, InTemp™.Name);
writeln (Qutrile);
InTemp := InTemp~,Link;
while InTemp <> nil do
begin
write (OutFile,’ ‘):
WriteString (OutFile, InTemp".Name) ;
writeln(Outrile):
InTemp := InTewmp".Link;
end; (* while %)
writeln (Outrile);
end; (* if %)
OutTemp :»= Current”.OutputlList;
if OutTemp <> nil then
begin (* Generate Output list *)
write (Qutrile, /OUTEUT ‘)
WriteString (OutFile,OutTamp”,Name)

203

writeln(Outrile);
QutTemp i~ QutTemp™.Link;
while OutTemp <> nil do
bagin
welte (OutFile,* U
WriteStriag{(Cutrile,OutTemp” . Name);
weiteln(Outrile);
QutTemp := QutTemp”.Link;
end; {* while *)
writeln({Outrile);
end; (» LF #)
StateTemp :~ Current™.StatelLiat;
if StateTemp <> nil then
begin (* Ganarate State list *)
write (OutFfile, ' STATE /)
WriteString (OutFile,StateTemp™ ,Name);
writeln (Outrile);
StateTemp := StatcTemp”,kink;
while StateTemp <> nil do
begin
write (Qutrfile,’);
HritaString (Out¥ile,StataTemp™ .Name);
writeln(Outrile);
StateTemp := StateTemp”,Link;
end; (* while *)
writeln (Outrile);
end; (% i£ »)
write (OutFile, 'MAXIMUM EXECUTION TIME ‘);
NriteString{Out¥ile,Current™ . MET);
writeln (OutFrile);
sriteln (Outrile);
writeln (QutFile, /END’};
Current := Current®.Link;

(* Dynamically create new file name *)
if NodeName [41) = /3! then
begin
NodeName (41]) := 70/;
NodeName (40) :~ succ(NodeName[40));
end (» if ¥)
else
NodeName [41]) :~ succ(NodeName([41l]}):
end; (* while *)
end; {* MakePSDL *)

(t——— - 0 e s 8 e 8 0 S 0 Bt ol D I G S B g P g e 0t s s s 0 e e ﬁ)

204

procedure MakeDataStreum (Head: DataPtr);

(* Generatec PSDL Data Stream *)
var

Temp: DataPbtr;

Quefile: text;

begin
rewcite (Outfile,’/n/suna2/voxk/capa/prototypes/padl.ds’);
writeln(Outfile);
if Head <> nil then
begin
Temp := Head;
write (Outfile,'DATA STREAM ‘);
WriteString (Outfile, Temp" ,Nava) ;
writeln (Outfile);
Temp := Temp~.Link;
while Temp <> nil do

begin

write (Outfile,’)
NriteString (Outfilo, Temp™.Name);
writeln (Qutfile);

Temp := Temp~.Link;
end; {* while *)
writeln (Outfile);
end; (% if »)
end; {* MakeDataStream *)

(Vmmmmm e ———— ----—i)

205

begin (* main *)
LoadDataStxuctura (Opltead, OpTall, DataHead, DataTall);
MakePSDL (OpHead) ;
MakeDataStxeam(Dataliead) ;

end.

206

APPENDIX F ICON FOR GRAPHIC EDITOR

/t ------------------ - - omom-

/4 2ile: aeditor.lcon

/* purpose: icon for graphic editor
/* authoxr: <roger thoxstenson

/* date: dec 1989

/. - - P

/* Format_veraion=l, Width=64, Height=64, Deplh=l, Valid bits_ per_ itsm=16
L]
/
Oxrrrr,Oxrrrr,Oxrrrr, Oxrrrr, 0x8000, 0x0000, 0x0000, 00001,
0x8000, 0x0v00, 0x0000, 0x0001,0x8000, Gx0000,0x0300, 0x0001,
0x8000, 0x0000, Gx0r00, 0x0001, 0x8800, 0x0000, 0x1800, 0x0001,
0x8000, 0x0000, 0x3300,0x0001, 0x3000, 0x0000, 0x6500, 0x0001,
0x%000, 0x0000, 0x8600, 0x0001, 0x8000, 0x0000, 0x8A00, 0x0001,
0x8000,0x0001,0x1200,0x0001,0x8000, 0x0G03, 0x1600- Ax0001,
0x8000,0x0002, 0x2400, 0x0001,0x8000, 0x000&, 0x2400, Ux0001,
0x8000,0x000A, 0x4800, 0x0001,0x8000, 0x0012,0x9800,0x0001,
0x8000,0x00%4,0xr000,0x0001, 0x8000,0x0025, 0xA000, 0x0001,
0x8000,0x0045, 0x2000,0x0001,0x8000,0x0086, 0x2000,0x0001,
0x8000, 0x008C, 0x4000, 0x0001, 0x8000, 0x008C, 0x8000, 0x0001,
0x8000,0x0388,0x80060, 0x0001, 0x8000, 0x0288, 0x0000,0x0001,
0x8000,0x0297, 0x0000,0x0001,0x8000, 0x04BA, 0x0000,0x0001,
0x8000,0x04A2, 0x0000,0x0001,0x8000,0x08C4,0x0000,0x0001,
0x8000,0x08C8, 0x0000,0x0001,0x8000, 0x1888,0x0000, 0x0001,
0x8000,0x1990, 0x0000, 0x0001,0x8000,0x3930, 0x0000, 0x0001,
0x8000, 0x2A60, 0x0000, 0x0001,0x8000, 0x28£0, 0x0000, 0x0001,
0x8020, 0x2E80, 0x0000, 0x0001, 028000, 0x4880, 0x0000, 0x0001,
0x8000, 0x4900, 0x0000, 0x0001, 0x8000, 0xD200, 0x0000, 0x0Q01,
0x8000,0x9600, 0x0000,0x0001, 0x8000, 0xAC00,0x003r, OxEQO]1,
0x8000, 0xC800, 0x0020, 0x2001,0x8%01,0x7000, 0x0020, 0x2001,
0x8001,0xC000, 0:03rr, Oxre01, 0x8003, 0xC000,0x0200, 0x0201,
0x8003,0x0000, 0x02ES, 0x2A01, 0x8002, 0x0000, 020247, 0x3201,
0x8006, 9x0000, 0x02E5, 0x2A01, 0x800C, 0x0000, 0x0200, 0x0201,
0x8008,0x0000, 0x03rr, Oxreol, 0x8000,0x0000,0x0000, 0x0001,
Oxrrrer,Oxrrer, Oxrrrr, Oxrrrr,0x8000,0x0000,0x0000,0x0001,
0x8000,0x0410, 0x2000,0x0001, 0x8000, 0x0410,0x2000, 0x0001,
0x8000,0x0400, 022000, 0x0001, 0x8078, 0x7470,0xra878, 0xnssol,
0x8084,0x8C10,0x2084,0xC401,0x8084,0x8410,0x2084,0x8001,
0x80rc, 0x8410, 0x2084, 0x8001, 0x8080,0x8410, 0x2084,0x8001,
0x8084,0x8C1G, 0x2484, 0x8001, 0x8078,0x7410,0x1878,0x8001,
0x8000,0x0000, 0x0000, 0x0001, OXFFFF, OXFFFY, OXFFFY, OXFFEF

207

APPENDIX G SSL SPECIFICATION

,ﬂ— -~ e " T G A T S b . v - - - - we o

£ile: padl.as,. 33l

pucpose: abatract syntax for psd) editor
author: daura j. white

date: 14 nov 39

------ ———— - ————————— ~—$——-.,

root psdl_cuciponants;
list padl_conponents;

padl_compunenta
PaalNil ()
| PadlPair(component psdl_components)

-
L4

component
NoComponent ()
| Data(id type spec type impl)
| Op(id operator_spec operatox_impl)

id
TdNull ()
| Id{IDENTIFIER)

.
’

operator_spec
: OpSpec(optional intexface optional keywords optional description
optional_axioms)

.
,

type_aspec
TypeSpec (optional type declarations optional operators
optional keywords optional description optional_axioms)

-
’

optional list optional_operators;
optional operatoxrs
: OpListNil ()
| OplList (type_op_spec optional_ operators)

208

ST I
v

1
T
‘ type_op_spac ! .
TypeOpNil ()

I TypeOpSpec(id operator_ spec)
H

optional list optional_intexface;

optional intexface

: IntexFaceNil()

InterFaceList (attribute optional_interface)

.. e

optional optional requirements;
optional requirements
ReqgmtaTraceNone ()

RegmtaPrompt ()
RegmtaTrace (id list)

) e e

optional optional keywords:

optional keywords
: KeyWoxdsNone ()
KeyWordaPrompt ()

|
| KeyWoxds(id liat)
H

optional optional_description;
‘ optional description
: InformalDescNone ()
InformalPrompt ()

|
| InformalDesc(text)
‘

optional optional_axioms;
optional_axioms
rormalDescNone ()
rormalPrompt ()
rYormalDesc (text)

Ve wwn v o0

attribute

EmptyAttr ()

Input (input optional_ requirsments)

Output {(output optional_reguirements)

States(state optional_requirements)

Generic(generic optional_ requirements)

Exceptions (exception optional requiremants)

TimingInfo (optional_met optional mcp optional_mrt optional_requirements)

N e e e . o— 8

input
InputTypeDecl (type_decl moxe_optional type_declarations)

.
.
.
’

output
: OutputTypeDecl{type_decl more_optional_type declaxationa)

.
¢

state
! StateTypeDecl (type_decl more_optional type_dsclarations
exp optional_exp_list)

-
]

generic
: GenericTypeDecl {type_decl moxe optional type_declarations)

.
.
’

exception
: ExceptionLiat (id_list)

- @

optional optional met;
optional met

MetNone ()
MetPrompt ()

Met (time)

e e wme ae

optional optional_mcp;

optional_mcp
: McpNone({)
| MHepPrompt{)
| Mcp(time)

optional optional mrt;

optional mrt
¢+ MrctNone()
| MrtPrompt ()
| Mrct (time)
time

Time (integer optional_unit)

.
.
[3
.

integer
IntegerNil ()
Integer (INTEGER)

e v we

210

. optional optional unit;
optional_unit

¢ UndeNid()
UnitPrompt ()
UnitMs ()
UnitSec!)
Unitddn ()
UnitHys ()

N e o — - a— .

type_decl
: TypeDecl(id_list type_ name)

*
L

optional list moxe_optional_ type_declarxations;
more_optional type_declarations
: MorxeDeclListNil ()
| MoreDeclList (moxe type_decl more_optional_ type_declarations)

.
’

more type decl
: MorxeDeclNil()
| MoreTypeDecl(id list type name)
H

optional_ type declarations
OptDeclhistNil ()
OptDeclList (opt_type_decl optional_type declarxations)

‘ optional list optional_ type declarations;

e = e

opt_type_decl
: OptDeclNil()
| OptTypeDecl (id_list type name)

list id list;

id_list

IdNil ()

IdPair (id id_list)

. w— e

type_name
! TypeName (id optional generic_actuals)

.
’

@ n

optional optional genexic_actuals;
optional_genexic_actuala

GenActuallid()

GenActualPrompt {)

GenActual (type_decl more_optional type declarations)

N s e o

opsrator_impl
OpImpl ()
| OpImplPadl(diagram optional streams optional timera
optional_control constraints optional deacrxiption)
| OpImplAds(id text)

.
L)

type_impl
TypeImpl ()
| TypelmplOp(type_name optional operator_ implementations)
| TypelmplAda(id text)

optional list optional operator_implementations;

optional operator_implementations

: TypeLisatNil({)

TypeList (type_op_impl optional_operator_implementationsjy

" o

type_op_impl
: TypeOpImplNil ()
| TypeOpImpl(id operxator_impl)

»
¢

diagram
Diagram(link optional_links)

.
.

optional list optional links;
optional_ links
¢ LinkLiatNil()
| LinkList (opt_link optional links)

»
¢

opt_link
¢ OptLinkNil ()
| OptLink(id id optional_time id)

.
:

2ink
¢ Link(id id optional_time id)

.
[

212

optional optional_time;
optional time
OptTimeNil ()
OptTimePxompt ()
OptTimea (bime)

e e w20

optional optional stxeams;
opticnal streams
StxecamaNil ()
| StreamaPrompt ()
| Streams(type_decl more_optional_ type declarations)
¢

optional optional timers;

optional_timers
: TimersNil()
TimersPrompt ()

|
| Timers(id_list)
H

optional optional_control_constraints;
optional_control constrainta
: ContrxolNil()
| ControlPxompt ()
| Control (constrxaint optional constraints)
¢

constraint
: Constraint (id optional_triggers optional period optional finish
constraint_options)

.
’

optional list cptional constraints;

optional constraints

: OptConNil()

OptConlLiat (optional_constraint optional constraints)

N - o

optional constraint
: OptConstraintNil()
| OptConstraint (id optional_triggers optional_ period optional_finish
constraint_options)

optional optional_ triggers;

optional triggers

TriggersNone(/

TriggersPrompt ()

TriggeraChoice (triggers choice)

w am o= e

213

triggexs_choice
¢+ TriggexCholceNil ()

| Triggexa(triggerx)
| TriggecaXf(opt_trigger predicate optional requixements)
H

txigger

: Txiggerdil()

| AllTrigger(id_liast optional requirements)
| SomeTriggex(id_list optional_requirxements)
¢

optional opt_trigger;
opt_trigger
:+ OptTriggerNily)
| OptTriggerxPrompt{)
| OptAllTriggex(id liat)
| OptSomeTrigger(id_list)

optional optional pariod;

optional_ pexiod

PexsodNone ()

feriodPrompt {)

Period(time optional_ requirements)

N e w4

optional optional finish;

optional_finish
¢+ FinishNone()
rinishPrompt {)

I
| Finish(time optional requiremants)
i

optional list constraint_options;
constraint_options
ConListNone ()
| ConListOpts({con_opts constraint_options)

.
’

con_opts
¢ ConOptaNil()
| OptOutput (id_list predicate optional requirements)
| OptException(id optional predicate optional requirements)
| OptTimer(timer operation id optional predicate optional requirements)

®

timex_operation

W am awe e -

OptHNil ()
Read ()
Reset ()
Start ()
Stop ()

predicate

e e

Predicate (relation optional boolean_xelations)

optional optional_predicate;
optional predicate

|
!

OptPredicateNil ()

OptPredPrompt ()
OptPredicate(relation optional boolean_xelations)

relation

:
|
|
.
'

RelNiLY{)
RelSimple (simple expression)

RelComplex {simple_expression relational_operator simple_expression)

boolean_xelation

e wem s on

BoolNone()
AndRel {xelation)
OrRel (relation)

optional list optional_boolean relations;
optional_ boolean_relations

.
¢

RelListNil ()
RelList (boolean_ relation optional boolean_xelations)

simple_expression

:
I
|
!
|
|
|
|
I
|
|
l
i

SimExpNil ()

SimInt (sign integer optional_ unit)
SimReal (sign real)
Simld (id)

SimNotXd (id)
SimStxing (string)
SimPred (predicate)
SimNotPred (predicate)
SimTrue()

Simralse ()
SimNotTrue ()
SimNotFalse()

218

optional liat optional_exp_list;
optional_exp_liat
ExpListiild ()
| ExpLiat(optional exp optional exp_liast)

-
L4

optional exp
T OptExpNil()
| OptExpConat {conatant)
| OptExpId(id)
| OptExpComplex(type name id exp optional exp_list)

exp
ExpNil ()
| ExpConat (conatant)
| Expld{id)
| ExpComplex(type name id exp optional exp_list)
¢
atring
: String(text)
H
text
: Taxt {id)
sign
: SignNil{()
| Sign(SIGN)
real

: RealNil()
| P_Real (PREAL)

.
’

relational_operator
Rel_None()
Rel Lt ()

Rel Gt /)

Rel Eq()

Rel Ne()

Rel _Co()

Rel Lte()
Rel Gte({)

L e e e I 1Y

216

conatant

.
:
|
|
|
|
i

ConatNone ()
ConatInt (integer)
ConstReal (xeal)
ConatTruel)
ConatFalse()

APPENDIX H SSL SPECIFICATION

/Q -------------- - e P e s Gn . - - D W G S 0, O S S W S A G R e P R L SR TG TR R G S R A YR G P T UL G SR ek G A S5 ot G el S B T W S P S
film: psdl.up.asl
purpose: unparaing rules for padl editer
author: laura 3. white
date: 14 pov 89
————————————————— - - - ./
psdl_components
: PadliNi) (8:)
| PsdlPairx {(8:"({"8%n") ")
component
NoComponent (":"%n{component) ™}
| ©Op (" :"SnOPERATOR “"~"])
| Data {":"¥nTYPE """")
H
: ®
IdNull (8::="<identifier>")
| Id (@::w")
¢
operator_spec
opSpec (" :"VnSPECIFICATIONSE® """ ""$be¥nEND"]
type_spec

: TypeSpec

[
e’

operator_impl
OpImpl

| OplimplPsdl

| OpImplAda

.
’

type_impl

: TypeImpl

| TypelmplOp
| TypelmplAda
,

[:"%¥nSPECIFICATIONSL" " """ ""§bynEND"]

(8:"Sn{operator implementation)®)
(8:"SnIMPLEMENTATIONSL """~ “SbWnEND"]
{€:"SnIMPLEMENTATION ADA *~"jt&n{ """)}SbAnEND®]}

{8:"Mnftype implementation]™)
{8:"SnIMPLEMENTATIONSESN" " " "$b{nEND"}
(8:"3SnIMPLEMENTATION ADA *~*$tin{ """)}SAbANnEND™)

218 .

optional_operators
OplistNi)
| OplList
type_op_spec
: TypeOpNil
| TypeOpSpec
H
osptional_intexface
IntexraceNil
| IntexFacelist

»
&

optional requirements
RegmtaTraGceNone

| ReqmtaPrompt
| ReqmtaTrace

optional keywords
KeyNoxdsNone
| KeyWordsPxompt
| KeyWords

optional_description
: InformalDescNone
InformalPrompt

|
| InformalDeac
H

optional axioms
: TFrormalDescNone
| FrormalPrompt
| YormalDesc
L4

attribute
: EmptyAttr
{ Input
| Output
| States
| Generic
| Exceptions
| TimingInfo

(@:)
(:7(14)

(":"Wn{optional operator})"™)
(= :"SnOPERATOR "=°)

(e:)
(§:70)9)

(e:)
(8:"Vn({xequixements}™)
(8:"SnBY REQUIREMENTSStAn"""th")

(€:]
(&:"%n(keywords) ™}
{Q: "SnKEYWORDSSLAN" " "4b"]

(€:)
(9:"Sn{description) ")
{@:"SnDESCRIPTIONSESA{™"")}%b"]

(9:)
{6:"Sn{axioms)™)
{@:"SnAXIOMSAEAN (""" }8b"]

[(“:"Sn{interface}")

(= :"SnINPUT"~"St"""§b"]

(" :"SnOUTPUT" " "4t"""3b")

(" :"VnSTATES" ““§t*""§b")

[T :"SNGENERIC" ™" "{t"""“3b")

(" :"SnEXCEPTIONSSLAN""""§b"]
~gmmmn)

219

input
¢ Inputfypebecd

.
¢

output
¢ OutputTypeDecl

.

¢

atate
: StateTypaDecld

.
L3

generic
+ GenerlcTypaDecl

.
¢

exception
: ExceptlionLiat

.
’

optional met
¢ MetNone
| MetPrompt
| Met
‘
optional mcp
s McpNone
| McpPrompt
| Mecp
/
optional mrt
Mrtione
| MrctPrompt
| Mrt
‘
time
Time
H
integer
¢ IntegexrNil
| ZInteger
H
optional unit
¢ UnitNil
| UnitPrompt
| UnitMs

{"1"§kIn""""%b")

[~:*stAn""""4b%)

(= "HEAR" """ Y nXNITIALLY&n" "~ *3b")

(“:"sein="""gbh")

(%:7)

(8:)
(@:"%n{met)")
(@:"SnMAXIMUM EXECUTION TIME "*)

(@:)
(@:*8%n({mcp)™)
{@:"SnMINIMUM CALLING PERIOD "")

(9:)
{8:"8%n(mrt) ")
(@:"SnMAXIMUM RESPONSE TIME "°)

(":"")

(8::~"<integex>"}
[8::m")

(8:)
(8:" {units)*®)
(@:% MS*]

220

| UnitSec {A:™ SEC™)
| UnitMin (@:™ MIN“)
| Unitlza {@:™ HOURS"]
f
type_decl
: TypeDecl (""" s =)

moxe_optional type declarations
: MorxeDeclListNiX {4:)

| MorsDeclLiat (€:~()19)
i
woxe_type_dec)
MoreDeclNil (":",¥n{more type decls)®)
| MoreTypcDecl (", anmcn o w7

optional type_declarations
: OptDeclListNil [8:]

| OpthecllList (@:"{*, 18]
opt_type_decl
: OptDeciNil (“:"$Sn{cptional type decl)")
| OptTypeDecl (“:"8nn=" : %=}
H
id list
: Xdnil {@::)
| Idrair (Rezm=(™, ")Q)
H
type name
TypeName (":"")

~e uol

optional genexic_actuals

: GenActualNil {@:}
| GenActualPrompt [8:" {generic actual parameters)®™)
| Genhkctual (@z™(=""%}")

optional operator_implementations
¢ TypeListNil {8:)
| TypelList {¢:"(10)
H

type_op_impl
¢ TypeOpImplNil (":"Sn{operxator implementation}"}

221

N Y R

Lo 2GR ANE

'
ORI S SSRPAIY X FHI S

| TypeOpImpl

.
*

diagram
: Diagram

.
[

optional links
¢ LinkLiatiil
| LinkList
:

opt_link
OptLinkNil
OptLink

e amm ae

link
¢ Link

.
’

optional _time
OptTimeNil
OptTimePrompt
OptTime

. - w— e

optional_streams
StreamsNil
StreamyPrompt
Stxeams

N o e

optional_timers
TimersNil
TimersPrompt
Timers

e e omm e

(= :"$nOPERATOR """]

{=:"SnGRAPHREG ™" ""8b"]

(e:)
(8:"()a)

(“:"$¢n{optional link}"]

(":I‘nﬂ"..l""ﬂ->ﬂ")

(G el Aalel P L L) |

(8:)
(8:" (time) ")
(A:7:%7)

fa:)
(:"Sn(data stream)")
(@:"SnDATA STREAMALIN™®"~"%gb")

{9:)
[@:"%n{timer)™]
(Q:"SnTIMERStSN" " "4b")

optional_control_constraints

: ControlNil

! ControlPrcmpt
| Control
H

constraint
: Constraint

optional_constraints
: OptConNil

{8:)
(8:"Sn{contxol constraints)™]
[@:“tnCONTROL_FONSTRAINTS\t"“'!b']

[~ :"SnOPERATOR ¥t"""""" "3b"]

[8:)

222

| OptConlLiat

optional_constxaint
: OptConatraintRil
| OptConstraint
‘

optional_triggers
TriggeraNone
! TrxiggersPronpt
| TriggexaChoice

.
.

trxiggers_choice
: TrigyexCholceNil
{ Triggers
| Triggersalf
[4

trigger
TriggerNil
{ MAllTrigger
| SomeTrigger

.
[

opt_trigger

¢ OptTriggexNil
OptTriggerPrompt
OptAllTrigger
OptSomeTrigger

optional_period

¢ PexiodNone

| PexiodPrompt
| Period

optional_ finish
¢ FinishNone

| FinishPrompt
| Finish
H
constraint_options
ConListNone
| ConListOpts

I
’

(e:"(1e)

("2
(" :"SNOPERATOR $t"~"~~~=®gphw}

(a:)
{Q:"%nltriggecs)™)
(@:"SNnTRIGGERED ""}

{@:"{triggexr choice}")
(8:7)
(@:=™ 1P """

(@:"{txigger]")
{8:"BY ALL "~")
(@:"BY SOME """}

(e:)

{@:"{txigger by} "]
(8:"BY ALL ®"]
{@:"BY SOME "]

(e:]
{8:"$Sn{pexiod}"]
(@:*SnPERIOD """}

(8:)
{@:"Sn{finish within)")
[8:"SnFINISH WITHIN ""~]

(9:)
(a:~[18]

223

con_opta

ConOptaliild
OptOutput
OptExcepticn
OptTimex

N e wmn s o8

timer_opexation
¢ Opthil
Read
Reset
Stact
Stop

s e e e e

predicate
: Predicate

.
1

optional_predicate
OptRredicateNil
| OptPredPrompt
| OptrPredicate
[4

relation

RelNil
RelSimple
RelComplex

e o — e

boolean_relation
¢ DBoolNone
| AndRel

| OrRel

[

{*:"$n{constraint options})")

(= :"AnOUTRUT ™~ Xr "-=)
(" :"$nEXCEPTION *"""]
[-:’qnnﬂn nen=y

(8:" (timexr opexation)"]
{@:"READ TIMER™)
(8:"RESET TIMER")
{8 START TIMER")

{8:"STOP TIMER®)

{=:"")

(a:]
{@:" (IF pradicate} "]
(@: IF ")

{@:"[xelation)™)
(€:7)
(d:m8st¥n"""""gb")

(":™ (boolean relation] *]
{":™ AND “")
[":™ OR *°}

optional_boolean relations

RelListNil
| RelbList

.
’

simple_expression
: SimExpNil
| SimInt
| SimReal
{ SimId

| SimNotld

| SimString

| SimPred

| SimNotPred

(e:}
(8:°"1

{(8:"[simple expression]"]
(8:777]

(8:°°)

(8:7)

(8:"NOT ""]

(8:7})

(8:7)

(@:"NOT "~}

224

SimTzue
SimFalse
SimNotTxue
SimNotralse

N awe wes oo =

optional_exp list
ExpListNil
| ExpList

.
L

optional_exp

: OptExpNil
OptExplonst
OptExpld
OptExpComplex

e owms Smes mmm

exp

ExpNil
ExpConst
Expid
ExpComplex

string
: String

-~ o

text
: Text

~

sign
SignNil
Sign

e = ae

real
RealNil
P_Real

e = oo

relational_ operator
¢ Rel_None
| Rel it
| Rel Gt
| Rel Eq
| Rel Ne
| Rel_Co
| Rel Lte

(8:“TRUE")
(@:"FALSE™)
{@:"NOT TRUE"]
(8:"HOT FALSE")

(8:)
(8:-{)Q)

{":", n{exp) "]
(~:",%n""})

{“:",%n"")
[":",An""* "="yn ("~ ") ")

{0:"(exp)™)

(@:7)

(@:")
[e:".'l"ﬂ‘n(l"“l’ll

"2 ogmW
[2t

(7:8]

[8: :="<aign>")
(8::=")

(Q::="<reald>™)
(8::=9)

(@:" {relational operator) "]

(8:" < ")
(8:" > ™)
[a:n - l]
{@:n /= ")
CHUEL |
(@:" <= ")

225

| Rel_Gte (8:™ >= %)

.
¢

conatant
: Conatlione {8:" [conatant] "]
| Consatint {(@:7)
| ConstReal (8:7)
| ConstTrue (Q:"TRUE"}
| ConstFalse (Q:"FALSE"]
i

/i-....

APPENDIX I SSL SPECIFICATION

file:

purpose:

author:
date:

psdl.lex.ssl

lexical xules for padl editor
laura j, white

13 nov 89

IDENTIFIER: IdentlLex< (a=zA-%Z]{a-zA-Z_0-9]* >;
WHITESPACE: Whitespacelex< [0 >;

INTEGER:
PREAL:
SIGN:

IntegerLex< (0-9)* >;
PReallex< {0=9)%™ " ([0-9)* >;
SignLex< {-+) >;

227

______ n/

APPENDIX J SSL SPECIFICATION

/Q —————————————————————————————————— - =t oo o0 o a v
£ila: padl.ad.sad)

purpoae; attribute declarationa for padl editor
author: laura j. white

date: 13 nov 89
Ident {aynthesized id t;);

Xd_list {syntheaized id_list t;);
PSDL_sign {synthesized aign t;);
PSDL_int {synthesized integer t;):
PSDL_real {syntheslized rxeal t;};

id = Xdent.t;

id_list = Id list.t;

sign = PSDL_sign.t;

integear = PSDL_int.t;

xeal = PSDL_real.t;

228

-/

APPENDIX K SSL SPECIFICA’S{ON

/ W s o s ot s oy o o Gt e O e - 0 Y - G Sy T S G G S T 8 W P W
f£ile: padl.ci.aal

purpoae: concrete input syntax for padl editor
author: laura j. white

date: 13 nov 89

Ident t:= (IDENTIFIER)

(Xdent.t = Id(IDENTIFIER);};

Id list t:w (Ident)

PSDL_saign HH

PSDL_int tim

PSDL_resl HEL]

(Id list.t = (Ident.t::IdNil);)
(Ident ’/,’ Id_list)
(Id_list$l.t = (Xdent.t::Id list$2.t);}:

(SIGN)
{PSDL_sign.t = Sign(SIGN);]};

(INTEGER)
{PSDL_int.t = Integex (INTEGER););

(PREAL)
{PSDL_real.t = P_Real (PREAL););

229

---../

APPENDIX L SSL SPECIFICATION

/Q..__—-.-. ________ - 2 0 s i 0 e e B O e 0 — -

£file: padl.tt.ss)

purpese; template transformations for padl editor
author: laura j. white

date: 12 nov 39

tranaform component

on “type"
<{componentd
Data {<id>,<type_ spec>,<type_impld>),

on “operator®
<{component> :
Op (<id>, <operator_spec>, <operator_impld):

transform type_op_spec

on "enter_operatoxr™
<type_op_spec> :
TypeOpSpec (<id>, <operator_spec>);

transform attribute

on "input"
<attribute> :
Input (<input>, <optional_requirements>),

on “output”
<attribute> :
Output (<output>, <optional_requirements>),

on "states"
<attribute> :
States (<state>,<optional_requirements>),

on "“generic®
<attribute> :

230

«/

Genexic (<generic>,<optional requirements>),

on "exceptiona"
<attribute> :
Exceptions (<exception>, <opticnal requirements>),

on "timing info®
<attribute> :
TimingInfo (<optional_met>,<optionul_mcp>, <optional mrt>,
<optional_ requixements>);

txanaform more_type_decl

on "enter type declaration®
<more_type_decl> :
MoxeTypeDeacl (<id_list>, <type _name>);

transform opt_type_decl

on “enter_ type declaration"
<opt_type_decl> :
OptTypeDecl (<id list>, <type_name>);

transform optional_generxic_actuals
on “entex_generic_actual parameters"
<optional_generiéﬁ&ctulla> :
GenActual (<type_decl>,<more_optional type_declarations>);

transform optional_requirements
on "enter_ requirements”
<optional_requirements> :
RegmtsTrace (<id_list>);
transform optional_ keywords
on "enter_ keywords"
<optional_keywoxds> :
KeyWoxds (<i¢ list>);
transform optional_description
on “enter description®

<optional_description> :
InformalDesc (<text>);

231

trxansform optional_axioms

on "enter_axioms®
<optional_axioms> :
FormalDeac (<text?);

transform optional time
on "enter_time"
<optional time> :
OptTime (<time>);
transform optional_met
on "entex MET"

<optional_met>
Met (<timed>);

transform optional mcp

on "“entex_ MCP"
<optional mcp>
Mop (<timed>);

transform optional mrt

on “enter MRT"
<optional mrt>
Mzt (<time>) ;

transform optional unit

on "milliseconds®
<optional_unit> :
UnitMs (),

on "seconds"
<optional_unit> :
UnitSec{),

on "minutes"
<optional_unit> :
UnitMin(),

on "“hours"®
<optional_unit> :
UnitHrs():;

232

txanaform optional_requirements

on "enterx_requirementa®
<optional_requirements> :
ReqmtaTrace (<id_list>);

tranasform optlonal_atreama

on “enter_stxeams"
<optional_streama> :
Streams (<type_decl>, <more_optional type_declaxations>);

trxansform optional_timers

on "enter_timers"
<optional_timerxs> :
Timers (<id_list>);

transform optional_control constraints

on "enter_contxol_ccnstraints*®
<optional_contxol constraints> :
Control (<constraint>, <optionsl_constraints>);

transform optional constraint

on “enter_constxaint™
<optional_constraint> :
OptConstraint (<id>, <optional_triggers>,<optional_period>,
<optional_finish>, <constraint_options>);

trxansform operator_impl

on "psdl_implementation™
<operator_impl> :
OpImplPsdl (<diagram>,<optional_ streams>,<optinnal_timers>,
<optional_ control constraints>,<optional_ description>),

on "ada_implementation®

<operator_impl> :
OpImplAda (<id>,<text>):;

233

cxanaform typs_impl . \

on "padl_lmplementation”
<cypa_impld>
Typc!mplOp(<uype_name>,<ophionul_ppe:ntor_}mpltunntutiono)),

on "ada_implementation”
<type_imply> :
TypelmplAda (<id>, <textd);

trxansfomm optional triggaera

on "enter_triggexs”
<optional_triggers> :
TriggeraChoice (<tziggers choice>);

tranafoxm triggers_choice

on "aimple_triggexs"®
<triggers_cholce> :
Triggexs (<txiggerc:),

on "triggers_ with if predicate"
<triggers choice>:
TriggeraX€ (<opt_trigger>,<predicated, <optional requirements>); .

tranaform trigger

on "all"
<trigger> :
AllTriggex (<id_liast>,<optional requirements>),

on "some"
<trigger> :
SomeTrigger (<id_list>,<optional_requirementsd>);

transform opt_trigger
on "all"
<opt_trigger> :
OptAlltrigger (<id_list>),
on "some"™

<opt_triggex> :
OptSomeTrigger (<id_list>);

o ®

tranaform optional period

on “"entex pexiod"
<optional_pexiod> :
Period (<time>, <optional requirementas>);

tranaform optional_finish

on “entar_finish within®
<opticnal fLinish> :
riniah (<time>, <optional xequirements>);

tranaform con opta

on "output®
<con_opts> :
OptOutput (<id_list>, <predicate>,<optional rejuirements>),

on "exception®
<con_opta> :
OptException(<id>, <optional_predicate>,<optional_ requixements>),

on "timer*
<con_opts> :
OptTimer (<timer_operation>,<id>,<optional_predicate>,
<optional xequixements>);

transform optional predicate
on “enter_predicate®
<optional predicate> :
OptPredicate (<ralation>, <opticnal_boolwan_relations>);
transform timer_ operation
on "read timer"

<timex_opexation>
Read (),

on "reset_timer®
<timer_operxation>
Reset (),

X

on "start_timer"
<timer_operation>
Start () N

238

on "atop_timer"
<timer_operation> :

Stop();

transform xelation

on "silmpla®
<relatlioa>
RelSimple (<simple_expression>),

on “complex"
<relaticnd> :
RelComplex (<simple_expression>,<relational_opexator>,<simple_expression>);

transform simple expression

on “integer_ exp"
<simple_expreassion> :
SimInt (<sign>,<integsr>,<optional unit>),

on “real exp"
<simple_expression> :
SimReal (<aign>,<real’),

on “id_exp®
<simple_expreasion> :

SimId (<id>),

on “not_id exp"
<simple_expression> :
SimNotId (<id>),

on "string_exp"
<simple_exprassion> :
SimString(<string>),

on "predicate exp"
<simple_expression> :
SimPred (<predicate>),

on “not_predicate_exp"
<simple_expression> :
SimNotPred (<predicate>),

on "true"
<simple_expression> :

SimTrue(),

on "not_true®

®

. <aimple_expression> ;
SimNotTrua(),

on "falae”™
<aimple_expression> :
Simralse{),

on "not_falau®
<aimple_expression> :
SimNotralae();

txansform relational operator

on "<"
<relational operator>
Rel Lt ()},

on "<m®
<relational_operator>
Rel_Lte(),

on ">*
<rxelational_operatoxr>
Rel Gt (),

‘ on "om%
<relational_operator>

Rel_Gte(),

on "=*
<relational operator>
Rel_Fq()l

on I/-I
<relational_operator>
P3)_Rel(),

on ":*
<relational operator>
Rel _Co{);

transform exp
on "constant"®
<exp> :

ExpConst (<constant>),

on "id"®
<exp> ¢

237

xpId (<idd>),

on "complex™
<exp> @
ExpComplex (<type_name>,<id>,<exp>,<optional_exp_liat>);

txansform optional_exp

on “cenatant®
<optional_exp> :
OptExpConat (<censtantd>),

on "id®
<optional exp> :
OptExpld (<id>),

on "“complex"
<optional exp> :
OptExpComplex (<type_name>,<id>, <exp>,<optional_exp_list>);

transform conatant
on "“integer"®
<constant>
ConstInt {<integer>),
on "real®
<constant> :
ConstReal (<xeal>),
on “true"
<{constant> :
ConstTrue(),
on “"false"
<constant> :
ConstFalse();
transform opt_link
on “enter_link"™
<opt_link> :
OptLink (<id>,<id>,<optional_time>,<id>);

transform type_op_impl

on "enter_ operacor_implementation"

238

' <type_op_impl> :
TypeOpImpl (<id>,<opexator_ impl>);

transform boolean_relation

on "and_relation"”
<boolean_relation> :
AndRel (<xelation>),

on “or_relation"
<boolean_relation> :
OzRel {<relation>);

APPENDIX M KODIYAK TRANSLATOR SPECIFICATION

File:

Date:

translator.k

B0 0t e 0nt 0 s G G G S D G0 G B G G Gy e D D A g D S P R e Sy 40

charlie altizer

dec 88

Last Modified: dec 89 by laura j. white

1
|
|
! Authox:
!
|
{
|

{definitions of lexical classes

vdefine Digit
tdefine Int
Adefine Letter
Sdefine Alpha
Adefine Blank
Adefine Char
Sdefine Quote

1 (0-9)

:{Digit)+
t{a-zA-Z_)
:{{Lettex]) | {Digit}))
:(\n}
(7))

(")

| definitions of white space

:({Blank)+

| definitions of compound symbols and keywords

GTE
LTE

NEQV

ARROW

TYPE

OPERATOR
SPECIFICATION
END

GENERIC

INPUT

OUTPUT

STATES
INITIALLY
EXCEPTIONS
NORMAL
MAX_EXEC_TIME
MAX_RESP_TIME
MIN_CALL PERIOD

LY
s MLt
:n/-u
LI

:type|TYPE

soperator | OPERATOR
:specification|SPECIFICATION

tend | END

tgeneric|GENERIC

:input | INPUT
routput |OUTPUT
:states|STATES

tinitially|INITIALLY
iexceptions | EXCEPTIONS

:normal : NORMAL

:maximum{]Jexecution(]Jtime|MAXIMUM[)JEXECUTION([)TIME
:maximum(]Jresponse[]time|MAXIMUM|)RESPONSE[]TIME
iminimum[}calling[Jperiod|MINIMUM(]JCALLING[}PERIOD

240

MICROSEC

MS

SEC

MIN

HOURS

BY

KEXWORDS
DESCRIPTION
AXIOMS
IMPLEMENTATION
ADA

GRAPH
DATA_STREAM
TIMER
CONTROL
TRIGGERED
ALL

SOME

PERIOD
FINISH
EXCEPTION
READ

RESET

START

STOP

Ir

NOT

AND

OR

TRUE

FALSE

ID
STRING_LITERAL
INTEGER_LITERAL
REAL_LITERAL
TEXT

:microsec|MICROSZC

im3 |MS

taec|SEC

smin [MIN

shouxrs | HOURS

tby()xequiromenta|BY{)REQUIREMENTS
tkeywords | KEYWORDS
sdeacription|DESCRIPTION
taxioms | AXIOMS
:implementation| IMPLEMENTATION
:adajAda|ADA

:graph|GRARH

tdata{ Jstrxeam|DATA{)STREAM
itimex|TIMER

tcontxol{ Jconstrainta|CONTROL[)CONSTRAINTS
:trxiggered| TRIGGERED

:by(Jall|mY(JALL

tby(}some|BY[)SOME
:pexiod | PERIOD

sfinish(Jwithin|FINISH[JMITHIN
texception|EXCEPTION

sxead{ Jtimex|READ([]TIMER
:xeset(Jtimer|{RESET([JTIMER
sstaxt{ Jtimex|START(]TIMER
tatop(ltimex|STOP([)TIMER
sif|xr

$WSN | ROt | *ROT"

:*L" | "and” | "AND"
:'I'I'OI'I'OR'

ttxue|TRUE

:false|FALSE

¢ {Letter) (Alpha}*

: {Quote) (Char}*{Quote)

¢ (Int)

s{Int}™."{Int)

s"{"({Char)a=)"

| operator preceder 2s
| Sleft means group and evaluate from the left

Sleft OR;
Sleft AND;
Sleft NOT;

Sleft ’<’, ’>!, '=!, GTE, LTE, NEQV;

Sleft :;

"

241

{ attribute declarationa for nontexminal aymboly

start { txn: atrcing;);
padl { txn: string;
uncond_output_map;:atring->string;
out_env:atring->string;
in_env:istring->stxing: });
component (trxn: stxing;
uncond_output_map_in:stxing->atring;
uncond_output_map_out:stxing->stxing;
in_env:string->stxing;
out_env:iatring->string; }:

data_type { trn: atring;
in_env:string->atring;);

operator { trn: stxing;
uncond_output_map_in:string->string;
uncond_output_map_out:string->string;
in_env:string->atring;
out_env:string->string;):

type_spec (trn: string;
in_env:string~>string; };
type_decl_1_list { trn: string;
ir_env:iatrxing->stxing; }:
type_decl (tzn: string;
in_env,out_env :string->string;
opid:atring;
action_code:string;
ucond_output:stxing; };

op_spec_0_list { txn: string;
in_env:istring->string; }:

opexator_spec | opid:string;
ds_decl:string;
state_decl:istring;
ucond_output:stxing;
excp_decl:atring;
in_env,out_env :string->string;)

interface { in_env,out_env :stxing->stxing;
in_parm, out_parm : strxing;
ds_decl: string;
state_decl:string;
excp_decl:stxring;
ucond_output : st.xing;
opid:string; }:

attribute { ds_decl: string;
in_env,out_env :string~>string;

242

in_parm, out_parm: atring;
opid:astring;
state_decl:string;
ucond_output:string;
excp_decl:stxing; };

time { trn: string; };

unit { value: int; };

id_liast { txn: string;
action_code:atring;
tname:atring;
opid:string;
ucond_output:string;
count : int;

exp_env:int->string;
in_env:string->string;

out_env:string->string; };

reqmts_trace { txn: string; }:
functionality (txn: stxing; };
keywords { txrn: string; });
informal_desc (txn: string;);
formal_desc (txn: strxing; };
type_impl (trn: stxing;);
op_impl 0 _list { txn: string; };
operator_ impl { trn: string;

out_env:string->string;
in_env:string->string;
uncond_output_map:atring->string;
loc_ds_decl:string;
timex_decl:string:

opid:string; }:

psdl_impl (txn: string;

parent : string;
uncond_output_map:string->string;
in_env:string->string;
out_env:string->string;
loc_ds_decl:string;
timer_decl:string; };

data_flow_diagram { trn: string;

in_env, decl map : string-> string:; };

link 0_list { trn: string;
in_env,in_decls,out_decls : string->string;):

link { trn: atring;
in_env,in_decls,out_decls : string->string; };

opt_time { trzn: string; }:
type _name (trn: string; };

243

timers { trn: atxing;):

control constrxainta (txn: string;
parent : string;
uncond_output_map:string->string;
in_env:atring->stxing;
out_env:atring->string;
decl_map : string->string;

)i
constraint_optiona { trn : string;
in_env: atring->string;
out_env:iastring->string;
opid:string;
)
moxe_constraints (txn string;
parent:atring;
uncond_output_map:astring->string;
in_env:string->atring;
out_env:istrxing->string;
decl_map : atxing->string;
):
opt_trig (out_gnv:atring->string;
in_env: string->string;
streams_check:string;
end_if_ streams:string;
pred:string;
end if pred:string;
)i

trigger {(if: string;
end_if:string;
in_env, out_env:stxing->strxing; };
opt_per (trxn: string;):
opt_£fin w (trn: string;);
streams (txn: string;
in_env,out_env :string=->string;):
timer_op { trn: string; };
opt_if predicate [if: string;
end if:string;
parent:string;
in_env : atring-> string; });
predicate { trn: string;
in_env: strxing->string;
type: string; }:
expression_list { trn: string;
count:int;
exp_env:int->string;);
expression { txn: string;)i
relation (tra. string;
in_env: string->string;
type: string; }:
simple_expression (trn: string;

244

parent: stxing;
in_env: string->atxing;
type:atring; };
xel_op (trn: atxing;
left_op:string;
right_op: stxing;
opn_type: atring;
parent: atring;);
aign (trn: striang;);

lattrbute declaxdtions for terminal aymbols

ID{ Atext: string;);

TEXT(Stext: string; });
STRING_LITERAL{ Stext: string;);
INTEGER_LITERAL(Stext: stxing; }):
REAL_LITERAL ({Stext: strxing:; };

"
Ipsdl grammar
atart

: padl

{ Soutput (["with PSDL_SYSTEM;\nuse PSDL_SYSTEIM;\npackage TL is\n",
psdl.trn,"end TL;\n"));
psdl.in_env = padl.out_env;

)

~e

psdl
: component psdl
{ padi(1l].trn = [component.trn,"\n",psdl(2]).txn];
psdl[l).out_env = component.out_env +| psdl[2].out_env;
psdl (1] .uncond output map = component.uncond output map_out
+| padl(2).uncond output map:
component.in eav = padl(l].in_env;
component .uncond_output_map_in = psdl([2].uncond_output_map;
psdl(2).in_env = psdl(l).in _env ;
)
|
{ padl.trn = "%;
psdl.out_env = ((?:string:"")};
psdl.uncond_output map = ((?:stxing:"%)) ;
)

.
’

component
¢ data_type
{ component.trn = "";
component.ocut_env = {(?:string:"")};
component .uncond_output_map_out = {(?:string:"%));

245

data_type.in_env = component.in_env; ‘

| operator
{ component.trn = operator.trn;
component.out_env = opexatox.out env;
component .uncond_output_map_out = operatox.uncond_output_map_out;
operator.in_env = component.in_env;
operator,uncond_output_map_in = component ,uncond_output_map_in;

.
1]

data_type
: TYPE ID type apec type_impl
{ data_type.txn = "";
type_spec.in_env = data_type.in_env;

.
‘

operator
: OPERATOR ID operator spec operator_impl
{ operator.trn =

(operator.in_env (ID.S%text”"CONSTRUCT") =~ "composite opexatox®

-» {"\npackage %,
ID.Stext, " _SPEC is\n",oporator_spec.ds_decl,"\n",
operator_impl.loc_ds_decl,"\n",
operator_spec.state_decl,"\n",
operator_impl.timex_decl, "\n", ‘
ope:atoq_spec.excg_decl,'\nend ",
ID.Stext, " _SPEC;\n",operator_impl.trn)

' LILJ

):

operator.uncond_output_map_out =
((ID.\text:operator_spec.ucond_output));

operator_spec.opid = ID.%text;

operatoxr_spec.in env = operator.in_env;

operator_impl.opid = ID.%text;

operator_ impl.in env = { ("PARENT" :ID.Stext)} +| operator.in_env;
operator_impl.uncond_output_map = operator.uncond_output_map_in;
operator.out_env = operator_spec.out_env +| operator_impl.out env;

.
,

type spec
: SPECIFICATION type decl_ 1 list op_spec_0_list functionality END
{ type_spec.trn = "%;
type_decl 1 list.in_env = type_spec.in_env;
op_spec_0_list.in_env = type_spec.in_env;

}

-

. type_decl 1 _list
: type_decl

(type_decl_l list.txn = type decl.trn;
type_decl.action_code « "type®;
type_decl.in env = type decl 1 list.in_env;

)

|
{type_decl_1 list.txn = "%;)

.
4

type_decl
t id_list ‘:f type_name
{ type_decl.txn = id list.trn;
type_decl.out_env = id list.out_env;
type_decl.ucond_output = id_list.ucond output;
id list.in_env = type_decl.in env;
id list.action_code = type_decl.action_ code;
id_list.tname = type name.trn;
id list.opid = type_decl.opid;
id list.count = 1;
id_list.exp env = ((?:int:"")};

)

| 3d_list ‘:’ type_name ‘,’ type decl
{ type_decl{l).txn = id list.txn - type_decl{2).trn;
‘ type_decl{l].out_env = id_list.out_env +| type_decl(2].out_env;
type_decl.ucond_output = id_list.ucond output
® type_decl{2].ucond output;

id list.in env = type_decl{l].in_env;
id_list.action_code = type decl(l].action_code;

id list.tname = type name.trn;

id_list.opid = type_decl{l).opid;

id list.count = 1;

id_list.exp_env = ((?:int:"%});

type_decl(2)].in_env = type decl(l].in_env;
type_decl{2].opid = type_decl{l].opid;
type_decl(2].action_code = type_decl{l}.action code;

.
[

op_spec_0_list
¢ op_spec_0_list OPERATOR ID operator_ spec
{ op_spec_0_list(1l].txn = "*%;
operator spec.in_env = op_spec_0_list.in env;
op_spec_0_list[2).in_env = op_spec_0_ liat(l]).in_env;
)
|
{ op_spec_0_list.trn = "%;)

.
14

® ”

opexator_spec
: SPECXFXCATION intexface functionality END ’
{ opexatox_spec.ds_decl = interface.ds_decl;
vperxator_spec.state_decl ~ interface.state_decl;
operatox_spec.excp_decl = intexface.excp_decl;
optrxator_spec.ucond_output = interface.ucond output;
oparatox _spec,out_env =
(intexface.out_env(operator_spec.opid "INPARM®) == ®® ||
interface.out_env(opexator_spec.opid”"OUTPANY") == "¢
=> {{(operator_spec.opid”"PROCCALL") :
(interface.out_env(operator_spec.opid™™INPARM®),
intexface.out_env(operator_spec.opid~"OUTBEARM")]))
(((operator spec.opid™"PROCCALL"):
{intexface.out_env(operator_ spec.opld”“INPARM™"),*,",
intexface.out_env(operatorx_spec.opid”"OUTPARM")}))
) +| interface.out_env;

interface.in_env ~ operator_spec.in_env;
interface.opid = operator_spec.opid;

)

.
’

interface
: interface attribute reqmts_trace
{ Intexface(l}.ds_decl =
(interface(2).ds_decl,™\n",attribute.ds_decl);

interface(l).state_decl =
(intexface(2).state_decl,"\n",attxibute.state_declj;

intexface(l).excp_decl =
[inte:fnce(Z].excp_ﬁecl,'\n',utt:ibutq.excp_ﬁocl]:
interface(l].in_parm = interface(2).in_parm - attrxibute.in_parm;
intexface(l].out_parm = interface(2].out_parm ~ attribute.out_parm;

intexface(l).out_env =
{ ({interxface(l) .opid""INPARM") :interface(l).in_parm)
({intecface(l] .opid""OUTPARM") :interface(l].out_parm))}
+| dutexface(2].out_env +| attribute.out_env;

interface(l).ucond_ocutput = interface(2].ucond output
" attribute.ucend output;

intexface{2).opid = interface{l).opid;
intexface(2}.in_env = interface(l).in_env;
attribute.in_env =~ interface(l].in_env;
attribute,opid = interface(l].opid;

|
{interface.ds_decl = ®~;
interface.state_decl = "";
interface.excp_decl = "";

g @

interface.in_parm = "";
intexf{ace.out_pagzm = "";
intexface,out_env =~ {(?2:3txing:""})};
interface.ucond output = "=;

attxibute
¢ GENERIC type decl

{ type decl.action _code = "*;
type_decl.opid = attribute.opid;
type_decl.in_env = attribute.in_eav;
attribute.out_env = type_decl.out_env;
attribute,ds_decl =~ *%;
attribute.state_decl =~ "%;
attribute,excp_decl = *%;
attribute.in parm « *%;
attribute.out_parm = **;
attxibute.ucond output = "%;

| INPUT type_decl

{ type_decl.action_code = ®input®;
type_decl.opid = attribute.opid;
type_decl.in_env = attribute.in_env;
attribute.out_env = type_decl,out_env;
attribute.ds_decl = type_decl.txn;
attribute.state_decl = "%;
attribute.excp _decl = *";
attribute.in_parm = type_decl.out_env(attribute.opid”“"INPARM®);
attribute.out_parm = "%;
attribute.ucond_output = "%;

)

| OUTPUT type_dccl

{ type_decl.action_code = “output™;
type_decl.opid = attribute.opid;
type_decl.in_env = attribute.in_eav;
attribute.out_env = type decl.out_env;
attribute.ds_decl = type_decl.txn;
attribute,state_decl = *";
attribute.excp_decl = "%;
attribute.in_parm = "%;
attribute.out_parm = type_decl.out_env(attribute.opid”"OUTPARM®);
attribute.ucond output = type_decl.ucond output;

}

| STATES i<l _list ’:’ ID INITIALLY expression list
{ id_list.action_code = "states";

249

)

id_list.opid = attribute.oplid;
id_liat.tname = ID.ktext;
id_)ist.count = ;

id list.exp_env = expreasion list.exp_env;

id:llat.in_pnv =~ attrxibute.in_env;
expreasion_list.count = 1;
attribute.out_env = lid_list.out_eav;
attcibute,ds_dedl = "%;
attribute.state_decl = id_list.trn;
attribute.excp_decl = "%;
attrxibute.in_pazm = "%;
attribute.out_pamm = "";
attribute,ucond output = "%;

| EXCEPTIONS id_list

{

)

id list.action_code = "excp":
id_list.tname = “exception™;

id list.opid = attribute,.opid;
id_list.count = 1;

id_list.exp_env = {(2:ink:"")};
id_list.in_env =~ attribute.in_env;
attxibute.out_env = id_list.out_env;
attribute.ds_decl = "%;
attribute.state_decl = "%}
attribute.excp_decl = (id_list.trn,"
attribute.in_paxm = "%;
attribute.out_parm = "";
attribute.ucond output = "%;

| MAX_EXEC_TIME time
{ attribute.ds_decl = "%;

)

attribute.state_decl = "%;
attribute.excp_decl = ";
attribute.out_env = {(?:string:"")};
attribute.in pazm ~ "%;
attribute.out_parm = "";
attribute.ucond_outpnt = "%;

| MIN_CALL PERIOD time

{

attribute.ds_decl = "";
attribute.state decl = "*;
attribute.excp_decl = "“;
attribute.out_env = {(?:string:"")};
attribute.in parm = "";
attribute.cut_parm = "";

250

: PSDL_EXCERTION;\n"]; ‘

attribute.ucond output = "%;

| MAX_RESP_TIME time

{ attribute.ds_decl = "%;
attribute.atate_decl = "“*;
attribute.excp _decl = "%;
attribute.out_env = ((?:stxing:"")};
attribute.in parm = ®*=;
attribute.out_parm = "=;
attribute.ucond output = "*%;

id_list
¢ ID 7,7 id list
{ id_Yist(1l).txn =
(1d_list(l).action_code == "input® ||
id_liat(1l].action_code == "“output"
=> {id_list{l).in_env(id list(1].opid""PARENT") =m=m ®u
=> ("package DS®,ID.%text," is new *,
(id_1ist{1).in_env(ID.Stext ""BUFF_TYPE") == Sfifo"
~> *P{FO_BUFFER"
“SAMPLED BUFIER")
e"(",id_list(1l].tname,");\n")
["package DS, ID.Stext," renames ",
id_1ist[1].in_env(id_list[1].opid""PARENT")," SPKC.DS",
ID.%text,*;\n"]) - id list(2).txn

§ id_list(1].action_code == "states"”
=> ["package DS",ID.Stext," is new STATE_VARIABLE (%,
id_list(1l].tname,”, ",id list(l).exp_env(id list(1].count),
"):\n") ° id list(2).txn

¥ 1d list(l).action_code == “excp"
> ["EX",ID.%text,",",id list[2].txn)

id_list(1l].action_code == "stream"

-> [“package DS",ID.Stext,™ is new *,
(id_list[l].in_env(ID.Stext “BUFF _TYPE™) we "fifo"®
=> "rIro_BUFFER"

§ “SAMPLED_BUFFER™), “(“,id list[1).tname,");\n")
® id_list([2]).trn

§ id_list{l].action_code == "timer"
-> ["TL",ID.Stext,",%,id 1list(2].trn]

id list({l).action_code == "by all"

251

-> [id_list(1).opid,"_SPEC,DS",ID.$text," .NEN_DATA®,™ AND \n*®,
id_list(2).tzn)

id_list(1).action_code == "“by some™
-> [id_list(1). opid,' SPEC.DS", ID.Stext, " ,NEW_DATA", " OR \n*,
id_list(2}.tzn)

id_list(l).action_code == "co_output®
~> (id_list(1}).in_env(id_list[1l).opid “PARENT*)," SPEC.D3",
ID.Atext, " .NRXTE (", ID.Stext, ") ;\n",id_xist(2].txn)

I B

id list(2).in_env = id_list (1) .in_env;

id_list(2).action_code = id_list(1]).action_code;

id list(2).opid = id_list(1l).opid;

id_list(2).tname = id_list(1).tname;

id_list(2).exp_env = id_list(1l).exp_env;

id list(2).count = id list{l).exp_env(id list(l].count + 1) <> wn
=> id_list{l}.count + 1
§ 4id_list(l).count;

id_list{l).out_env =
(id_list(1}.action_code == "by all"®
=> {((XID.Mtext"“BUFF_TYPE") :"fifo")} +| id_list[2).out_env
§ id_list(1).action_code =~ "by_ some"
««> { ((ID. Mtext " "BUFF _TYPE") :"sampled®)} +| id list(2].out_env
id_list(l).action_code m= *input™
=> {((ID.Stext"“TYPE") :id list[1].tname)
((ID.Stext “"CONSTRUCT") :"data_stream®)
((id_list(l).opid"™INPARM"):[ID.SMtext,", ",

id list(2].out_env(id_list[2].opid”"INPARM®)])
} +| id_list([2).out_env

§ id_list(l).action_code == "output®
~> {{(ID.Stext""TYPE™):id_list({l).tname)
{{ID.%text ""CONSTRUCT") : "data_stream")
((id_list({1].opid""OUTPARM"): [ID.%text, ", ",
id list[2).out_env(id_list(2).opid~"OUTPARM")])
) +| id_list(2).out_env

id_list(1l).action_code == "stream"
=> { ((ID.Stext " "TYPEY) :id_list(1l].tname)
((ID.Stext “"CONSTRUCT") :"data_stream")} +| id_list[2].out_env

$§ id_list([1l].action_code == "states"

=> {{(ID.%text""TYPE") :id list(1l].tname)
((ID.%text "CONSTRUCT") :"data_stream"))} +| id_list(2].out_env

252

. # id_list(1l).action_code == "excp"
-> { ((XD.%text ""CONSTRUCT") :"exception”)] +| id list{2).out_env

id)ist{l}.action_code == "timer"
=> {((XD.%text""CONSTRUCT") :*timex®}} +| id ‘'ist(2].out_env

id _list(l].action_code == “co_output®
=> {((id_)iat({1}.opid,"_",ID.S%text, "QUTPUT"]:"conditional®))
+| id_list(2).out_env

¢ {(?:stxing:"%)})
)

id_list.ucond output =
((id_list(l).in_env(id list(1l]).opid™" "“"ID.%text"“OUTPUT")
<> "conditional™) &&
(id_list{1l].action_code == "output"®)
-> [(4d_list{l).in_env(id_liat(l].opid"*PARENT")," SPEC.DS",
ID.Stext, " .WRITE (", ID.Stext,");\n")
' nn
) ° id_list(2).ucond_output;

| ID
. { id_list.trn =
(id_list.action_code == "input" ||

id list.action_code == "output"
=> (id list.in env(id list.opid”“PARENT") me %%
~> ["package DS™,ID,Stext," is new ",
(3id_list.in_env(ID.Stext " "BUFF_TYPE") == ®"fifo"
=> "rIr0o_BUFFER"
§# “SAMPLED_BUFFER")
" (", id_list.tname,");\n"]
¢ ("package DS",ID,Stext," renames ",
id_list.in_env(id_list.opid™"PARENT")," SPEC.DS",
ID.Stext, ";\n"})

id_list.action _code == “states"
~> {"package DS",ID.%text,"™ is new STATE_VARIABLE(",
id_list.tname,", %,id list.exp_env(id_list.count),
") i\n")
id_list.action_code == "excp"
-> ["EX",1ID.%text)

id_list.action_code == "stream"
~> {("package DS",ID.Stext," is new *,
(id_list.in_env(ID.Stext "BUFF_TYPE") w= "fifo"
-> "F1ro_BUFFER"™
4 "SAMPLED BUFFER"), "(",id list.tname,®);\n")

‘II’ 253

id_list.action_code == "timex"
=-> ["TL",XD.%text)

id_list.action_code == "by all™
=> (id_list.opid,"_SPEC.DS",ID.¥text,"™.NEN_DATA"}

§ id_list.action_code == "by some®
-> (id_list.opid,"_SPEC.DS®,ID.%text,"™.NEW_DATA"]

id_liat.action code == "co_output™

=> {id_list.in env(id_list.opid”"PARENT®),"* SPEC.D3",ID.\text,

" .WRITE (", ID.%text,");\n"]
LI

id_list.out_env =
(id_list.action_code == "by all"
=> [({XD.%Stext""BUFF_TYPE") :"£ifo"))

id_list.action_code == "by some"
=> {({ID.Stext""BUFF_TYPE®) :"sampled"))

id list(1).action_code == "input™
=> {{(IP.%text ""TYPE") :id list{l).tname)
((XD.8text""CONSTRUCTI") : "data_stream")
((id_list.opid™™“INPAFM") :ID.Stext))

id list(l].action_code == “output"
=> { ({ID.%text""TYPE") :id_list (1] .tname)
{ (ID.%t.ext""CONSTRUCT") : "data_stxeam")
{(1d_list.opid”"OUTPARM") :ID.\text))

id_list{l).action_code w= “stxsam"
=> {({(ID.%text™"TYPE") :id liat{1].tname)
((ID.%text""CONSTRUCT") :“data_stream")}
id_list(l).action_code == "statea™
=> {{(ID.Vtext "TYPE"):id list(l].tname)
({ID,%text""CONSTRUCTI™) : "data_streem"))

id_list.action_code == "excp®
=> {((ID.%text ""CONSTRUCT") :"exception"))

id list.action_code == “timer"
=> { ((ID.%text ""CONSTRUCT") :"timer") }

#§ id list.action_code == "co_output™
=> {([id_list.opid,"™_",ID.%Stext,"OUTPUT"):"conditional®))

((?:string:""))

254

id_list.ucond output =
((id_list.in_env(id_list.opid""_*"ID.\text""OUTPUT")<>"conditional®)
&& (id_list.action_coda == "output®)
=> (id_list.in_env(id list.opid”"PAREKNT"), " SPKC.DS",ID.0text,
" WRITE(",ID.%text,");\n"]
. nn
)i

)

time

INTEGER_LITERAL unit
{ tima.txn = "%;)

unit
MICROSEKEC
{ unit.value = 1;

)

{ unit.value = 1000;

{ unit.value = 1000000;

{ unit.value = 60000000;

{ unit.value = 3600000000;

]
’

regmts trace
: BY id_list

{ reqmts_trace.txrn = *%;
id_list.in env = {(?:string:"%));
id_list.action_code = **;
id list.tname = "%;
id_list.opid = "%;
id_list.count = 1;
id_list.exp _env = ((?2:int:"%)};

255

w
-~ Sl .

(=°¢Imt3_tx:ace.t:n L ILLFE

.
L4

functionality
: keywords informal_desc formul_desc
{ functionality.txn = "%; |}

.
’

keywords
: KSYWORDS id_list
{ (eyworda.trn = "®;
id_list.in env = {(?:stxing:"M)};
id_list.action_code = "=;
id_list.tname = "";
id_list.opid = "n;
id_list.count =~ 1;
id_list.exp_env = {(?2:int:"")};
)
|

{ keywords.txn = "®; |

.
[

informal_desac
¢ DESCRIPTION TEXT
(informal desc.tzn = "\n%; |}

{informal_desc.trn = "";)

-
’

formal_desc
: AXIOMS TEXT
{ formal_desc.txn = ™\a";)
|
(formal desc.txn = *%;)

.
:

type_impl
: IMPLEMENTATION ADA ID END
{ type_impl.trn = ["procedure ",ID.%text,"™ is;\n");)
| IMPLEMENTATION type_name op_impl 0_list END
{ type_impl.trn = ["\n package DATA_TYPES is \n",type_name.trn,"\n",
op_impl 0_list.trn,"\n*,
®end;\n"];)}
;
op_impl 0_list
: op_impl 0_list OPERATOR ID operator_impl

{ op_impl 0 list[l]}.trn = ®&;
opexator_ impl.opid = ID.ttext;)

256

{ op_impl_0_list(l].tzn = "";)

.
L4

operator_impl
¢+ IMPLEMENTATION ADA XD END
{ operatox_impl.trn = "%;
operator_impl.log_ds_decl = "%;
opexator_impl.timex decl = "%;
operator_impl.out_env = {((ID.%text”"CONSTRUCT") t"atomic_operatox®));
)

| IMPLEMENTATION padl_impl
(oper.tor_impl.txn = psdl_impl.trn;
operator_impl.loc_ds_decl = psdl_iwmpl.loc ds_decl;
operator_impl.timex_decl = padl_impl.timer_ decl;
psdl_impl.parent = operator_impl.opid;
padl_impl.in_env = operator_impl.in_env;
psdl_impl.uncond output_map = operator_impl.uncond output_map;
operator_impl.out_env =
{ ((operator_impl.opid”"CONSTRUCT™) : "composite_opexator®)) +|
padl_impl.out_env;

.
’

padl_impl
: data_flow_diagram streams timers control_ constraints informal desc END

{ padl_impl.trn = contxol constraints.txn;
psdl_impl.out_env = streams.out_env +| control_constraints.out env;
psdl_impl.loc_ds_decl = streams.trn;
psdl_impl.timer decl = timexs.trn;
data_flow_diagram.in_env = psdl_impl.in_env;
streams.in_env = psdl _impl.in env;
control_constraints.parent = psdl_impl.parent;;
control_constraints.in env = psdl impl.in_env;
control_constraints.decl_map = data_flow_diagram.decl map;
control_constraints.uncond_output_map = psdl_impl.uncond_output map;

.
[

data_flow_diagram
: GRAPH link_0_list
{ data_flow_diagram.trn = "%;
data_flow_diagram.decl map = link 0_list.out_decls;
link_0_list.in decls = ((?:string:""));
link_0_list.in_env = data_flow_diagram.in_env;

}

link_0_list

T link link_0_list
{ link_0_list(l].trn = "%;

287

link_0_list(2).in_decls = link.out decls;
link.in_decls = link_0_list(1}.in_decls;
link.in_env = link_0_list(1).in_env;
1ink_0_)ist(2).dn_env = link _0_list{l].in_env;
]

1ink_0_list(1).out_decls = link_0_list(2].out_decls; ‘

{
{ Link_0_list.trn = "";
l1ink_0_list.out_decls = link 0_list.in decls;

.
’

1ink
: ID *.% ID opt_time ARROW ID
{ link.txn = "%
link.out_decls =
(link.in_ﬂecls(ID(3].\text‘ID[l).ttext““kﬂhn') —-— "dup®
-> {(?:atxing:""))
{({XD{3) .%text "READ") : {1ink.in_decls (ID{3].%text~"READ"),
link.in_pnv("PARENT'),'_ﬁ?tC.DS',ID(l).\cext,'.ntlb(',lb[l].!toxt,
"};\n"}} ({ID(3).%text ID([1).%text”“READ"}:"dup"})
} o+l

(link.in_ﬂecla([ID(ZI.%text,"_“,lb[l].ttext]) me "dup"
«> {(?:stxing:"")}
((ID(2).%text:(link.in_decls(ID(2].%text),
ID(1) .Mtext,"™ : ", link.in_env(ID[1].%text"“TYPE"),
":\n"}) ((ID(2).%text,™ ", ID[1l]).%text]):"dup™)) .
)+

(1ink.in_§ecla((10(3].Qtext,'_ﬁ,!b[l).\text]) w *dup"

-> {(?:stxing:"")}

§ {(XID(3).%text:(link.in_decls (XID[3).%text),
ID(1].%text, ™ : ", link.in_env(ID(1).%text "“"TYPE"),
":\n"]) ([ID[B].ttext,"“",lblll.ttext):'dup'))

} +1 link.in decls;

.
[

opt_time
1 2 time
{ opt_time.txn = "";)
|
{ opt_time.txn = "\n";]

strxeaams
: DATA_STREAM type decl
{ streams.trn = type decl.trn;
streams.out_env = type decl.out_env;

®

‘ type_decl.opid = "%;
type_decl.action_code = “stream";
type_decl.in_env = streams.in_cnuv;

)
|

{stceams.txn = "%;
strxeams.out_env = ((?:stxing:™"));

)

type_name
: ID ‘[’ type decl ‘)’
{ type_name.trxn = [ID.Stext,"(",type_decl.txn,®]\n"];
type_decl.opid = "%;
type_decl.action code = "tname"; |}
| ID
{ type_name.txn = ID.%text;)

]
¢

timers
: TIMER id list
{ timera.trn = (id_list.trn," : PSDL TIMER;\n"};

i _list.in_env = {(?:stxing:"%));
id liat.action_code = "timer";
id list.tname = "%;
id list.opid = "=;

. id list.count = 1;
id_list.exp _env = ((2:int:"%)};

|
{timara.txn » *%;

}

.
[4

control constraints
¢ CONTROL
{ contxol constraints.txn = "%;
control constrxaints.out_env = ((?:string:"%));

)

| CONTROL OPERATOR ID opt_trig opt_per opt_fin w constraint_options
moxe_constraints
{control constraints.trn =
(control_constraints.in_env(ID.%text”“CONSTRUCT")
=w "composite operator®
~> ("procedure ",control_ constraints.in_env("PARENT"),% "%,
ID.stext,™ is\n begin\n null;\n end v,
control constraints.in_env("PARENT"),"_®,ID.Stext,";\n")

$# ("procedure ®,control_constraints.in_env ("PARENT"),

('II. 259

"\nbegin\n",opt_trig.atxeams_check,
contxol _constrainta.decl map(XD.Stext""READ"),
opt_trig.pred,
(contxol_constraints.in_env(ID,%text ""PROCCALL®) wm ®%
=> (ID.%text,";\n")
§ (ID.‘text,"(",
control_constraints.in_env (ID,S%text""PROCCALL") ,");\n")

"_",ID.Stext," is\n",control constraints.decl_map (ID.%text), .

),

constrxaint_options.txn, "\n",
control constraints.uncond_output map (ID.%text),
opt_trig.end_if_pred,opt_trig.end if streams,
"end ",control_constraints.in_env (“PARENT"),
"_",ID.%text,";\n"}

) ° more_constraints.trn;

opt_trig.in_env = control_constraints.in_env;
constraint_options.in_env = control constraints.in_env;
constraint_options.opid = ID.%text;
control constraints.out_env =
{ {{ID.%text ""PARENT") :control_constrainta.parent)}
+| opt_trig.out_env
+| constraint_options.out_env
+| more_constraints.out_env;

moxe_constraints.parent = control_constraints.parent;

more_constraints.in _env = control_constraints.in_env;

more_constraints.uncond_output _map = ‘
control_constraints.uncond_output_map;

moxe_constraints.decl_map = control constraints.decl_map;

{control_constraints.trn = "%;
control_constraints.out_env = {(?:stxing:"%)};

.
’

more_constraints
: OPERATOR ID opt_trig opt_per opt_fin_w constraint_options
moxe constraints
{more_constraints{l].txn =
(moxe_constraints.in env(ID.%text ""CONSTRUCTY) we
"composite_operatox"
~> {"procedure ",more constraints{l}.in_env("PARENT")," ",
ID.%text," is\n begin\n null;\n end ",
moxe_constraints(l].in_env("PARENT")," ", ID.Stext, *;\n")

$# ["procedure ",more constraints(l).in_env("PARENT"),
" _",ID.%text," is\n",more_constraints[l].decl map (XD.Wtext),

°

‘ "\nbegin\n", opt_txig.streams_cheack,
moxe_conatraints.decl_map(ID.Stext""READY),
opt_trig.pred,
(more_constraints(l).in_env (ID.Vtext "*PROCCALL") w= =®
~> (ID.Stext,™;\n")
? [(ID.Stext,"™(",
more_constraints(l].in_env (ID.Ntext""PROCCALL"), %) ;\n")
Ye
conatxaint_options.trn,"\n",
more_constraints{l].uncond output_map (ID.Stext),
opt_trxig.end if pred,opt_trig.end if streams,
“"end ",morxe_constrainta(l].in_env(“PARENT"),
" _",ID.Stext,";\n")
) - moxe_constraints(2].txn;

opt_trig.in_env = wore_constraints.in_env;
constraint_options.in_env = more_constraints.in_env;
constraint_options,opid = ID.Stext;
moxe_constraints(l).out_env =

{ ((ID.%text""PARENT") :moxre_constrxaints.paxent)} +|

opt_trig.out_env +(

constraint_options.out_env +|

more_constraints(2).out_env;
morxe_constraints(2].in_env = more constrainta(l).in_env;
more_constraints(2).uncond_output_map =

more_constraints{1].uncond_output_map;
. more_constraints(2).decl_map = more constraints(l]).decl map;

1
{moxe_constraints.trn = "%;
more_constraints.out_env = {(?:stxing:"")}

)

~e

censtxaint_options
¢ OUTPUT id_list IF predicate reqmts trace constraint_options
{ constraint_options(l].trn =
[*if ",predicate.trn,"\nthen\n “,id_list.trn,"\nend if;\n",
constxaint_options(2].txn) ;

constraint_options([2]).opid = constraint_optiona(l].opid;

constraint_options{2].in_env = constraint_options(l].in_env;

constraint_options(l).out_env = id list.out_env +|
constraint_options(2].out_env;

predicate.in_env = constraint_options{l].in_env;

id list.in env = constraint options(l].in_env;

id_list.action_code = "co_output®;

id_list.tname = "";

@ ”

id_list.count ~ 1;
id_list.exp_env = ((?:int:"")});
)

id_list.opid = conatraint_options.opid; .

| EXCEPTION ID opt_if_predicate reqmts_trace constraint_options
{ conatraint_optiona(l).trn = constraint_options(2).txn;
constraint_optlons(l).out_env = constraint_options{2).out_env;
constraint_options(2j.opid = constrxaint_options{l).opid;
constraint_options(2).in_env = constraint_options(l).in_env;
opt_if predicate.in_env = conatraint_options(l).in_env;

)

| timer_op ID opt_lf_predicate reqmts_trace constraint_optiona
{ conatraint_options(l).trn =
{opt_if predicate.if,timex_op.trn,™ (",
conatraint_options(l).in_env ("PARENT") ,*_ SPEC.TL", XID.%text,
");\n",opt_if predicate.end if,constraint_options{2).txn);
conatxaint_options(l}.out_env « constraint_options(2).out_env;
conatraint_optiona(2).opid = constraint_optiona(l).opid;
constraint_options(2}.in_env = constraint_optiona{l).in_env;
opt_if predicate.in_env = constraint_options{l).in_env;

{ constrxaint_options.txn = *%;
constraint_options.out_env = [(?:stxing:"")}; ‘

.
¢

opt_trig
: TRIGGERED trigger opt_if predicate reqmtis _trace

{ opt_trig.out_env = triggex.out_env;
opt_trig.pred = opt_ if predicate.if;
opt_trig.end_if pred = opt_if predicate.end if;
opt_trig.streams_check = trigger.if;
opt_trig.end_if streams = trigger.end if;
trigger.in_env = opt_trig.in env;
opt_if predicate.in_env = opt_txig.in env;

)

(opt_trig.out_env = ({?:ar-xing:""));
opt_trig.pred = *%;
opt_trig.end if pred = "";
opt_trig.stxeams check =~ n"%;
opt_trig.end if streams = "";

)

.
’

trigger
¢ ALL id _list

°

‘ { triggex.if » {"if =, id list.trxn,"\nthen\n");
trigger.end if = "and if;\n";

trigger.out_env = id _list.out_env;
id_list.action_code = "by all";
id_liat.tname = "";
id_list.opid = triggex.in_env("PARENT");
id_list.count = 1;
id list.exp_env = ((?2:int:""));

)

| SOME id list

{ trigger.if = ("if =, id_list.txn,"\nthan\n"];
triggex.end if = "end if£;\n";
trigger.out_env = id liat.out_env;
id_list.action_code = "by aoma®;
id_list.tname - "%;
id list.opid = trigger.in_env("PARENT");
id list.count = 1;
id list.exp env = {(?2:int:""));

|
{trigger.if = **%;
trigger.end if = "%;
trigger.out_env = ((?:string:"%}};
)

-
L4

opt_per

tPERIOD time reqmtas_trace
{ opt_pexr.trn = "\n"; |
|

{ opt_per.trn = "%; |

.
[

opt_f£in w
: FINISH time reqmts_trace
{ opt_£in w.txn = "\n"; |}
|
{ opt_£in w.trn = "";)

’

timer op
¢ READ
{ timer_op.trn = PSDL_ TIMER.READ"; |
| RESET
{ timer_op.tzn = "PSDL_TIMER.RESET*; |}
| START

263

| STOP

{ timer_op.txn = "PSDL_TIMER.START";) ‘
{ timex_op.trn = "PSDL_TIMER.STOP";)

.
’

opt_4£_pradicate
¢ IF predicate
{ opt_if_predicate.if = ("if ", predicate.txn,"\nthen\n"};

opt_if _predicate.end if = "end if;\n";
predicate.in_env = opt _1£_predicate.in_env;

)

|

(opt_if predicate.if = "%;

opt_if_predicate.end if = "";

)

-o

expression list
: expresalon
{expression_list.trn = expression.trn;
expression_ list.exp_env = { {(expression_list.count:expression.trn)
(0:i23 (expression_list.count))
(?:dnt:""));)

| expression ',’ expression_list
{expreasion_liast(1l).trn =
{expreasion.btrn, ™, ", expression_list(2).txn]; .
expression_list{l].exp_env =
{ (expression_list(1).count:expression.txn)} +|
expression_list(2).exp_env;
expression list{2).count = axpression_liat(l).count + 1; |}

expression
: INTEGER_LITERAL
(expression.txn = INTEGER_LITERAL,Stext;)
| REAL_LITERAL
{expression.trn = REAL_LITERAL.Stext;)
| STRING_LITERAL
{expression.trn = STRING_LITERAL.Stext;)
| TRUE
{expression.trn = " true ";)
| FALSE
{expression.txn = " false "; |}
| ID

{expression.trn = ID.%text;)
| type_name ‘.’ ID ' (‘/ expression list /)’
{expression.trn = [type name.trn,ID.S%text,"(",expression_ list.trn,
") ")

expression_list.count = 1;]}

. ®

predicate

-
’

‘ relation

relation

{predicate.txn = relation.txn;
predicate,type = relation.type;
relation.in_env = predicate.in env;

relation AND predicate

{predicate{l].trn = ([relation.txn," and ",predicate(2).txn);
predicate(l).type = *%;

predicate(2).in_env = predicata(l}.in_env;

relation.in_env = predicate(l}.in_snv;

)

relation OR predicate

{predicate(l).trn = (relation.trn," or ",predicate(2).tzn];
predicate{l].type = *%;

predicate(2).in_env = predicate(l).in_env;

relation.in_env = predicate{l).in_env;

}

simple_expression rel op simple_expression
{relation.trn = rel op.trn;
simple_expression(l).in_env = celation.in_env;
simple_expression(2].in_env = relation.in_env;
relation.type =
(simple_expression{l].type == "timex" ||
simple_expression(2).type == “timer"
=> ®timer"®
aimple_expression(l].type == “excp" ||
simple_cxpression(2].type == “excp"
=> "excp"
’ ne
):
rel_op.left_op = simple_expression(l].trn;
rel op.right_op = simple_expresaion(2].txn;
rel_op.parent = relation.in_eii. ("PARENT"):®
rel op.opn_type =
(simple_expression(l].type == "timer® ||
simple_expzession(2].type == “timer"
=> "timex_op"
4 Taxithmetic"
):

265

| simple_expression
{relation.trn = asimple_expreasion.trn;
relation.type = simple_expression.type;
simple_cxpresaion.in_env = relation.in_env;

)

.
’

simple_expredaion
¢ INTEGER_LITERAL unit
{simple_expression.trn = i2s (324 (INTEGER_LITERAL.Stext)
* unit.value);
simple_expression.type = "timez";
)
| sign INTEGER_LITERAL
{aimple_expression,trn = [sign.trn, INTEGER_LITERAL.Atext);
simple_expression.type = "";
)
| sign REAL_LITERAL
(simple_expression.trn = (sign.trn,REAL_LITERAL.Mtext];
simple_expression.type = "*;
)
| ID
{simple_expression.trn = ID.Atext;
simple_expression.type =
(simple_expression.in_env (ID,.%text""CONSTRUCT") == "timer™
- LR
t simple_expression.in_env (ID.%text™"CONSTRUCT")
):
)
| STRING_LITERAL
{simple_expression.txn = STRIKG LITERAL.%text;
simple _expression.type = "";
)
| *(’ predicate ’)’
{gimple_expression.trn = ["(",predicate.trn,")");
simple_expxe¢ssion.type = predicate.type;
predicate.in_env = simple_ expression.in_env;
}
| ROT ID
{simple_expression.txn = ["not ",ID.%text];
simple_expression.type = "";
)
| NOT / (’ predicate ’)’
{simple_expression.trn = ["not (",predicate.txn,")"]);
simple_expression.type = "%;
predicate.in_env = simple_expression.in_env;
)
| TRUE
{simple_expression.txn = " true ";
simple_expression.type = "";

}

266

| FALSE
{simple_expresaion.txn = " false %;
simple_expression.type = "";
)

| NOT TRUE
{simple_expxession.trn = [" not true "}:
simple_expression.type = “%;
i

| NOT FALSE
{simple_expression.trxn = " not false ";
simple_expxression.type = "%;

)

~e

rel op
A S
{rel_op.txn =
(xel_op.opn_type == "timer_ op"
-> ("PSDL_TIMER.
¢ (rel_op.left op," < ",rel_op.right_op]

¢

)
I 4 >l
{rel op.txn =
(rel_op.opn_type == "timex_ op"
~> ("PSDL_TIMER.
(xel _op.left op,™ > “,rel op.right_op)
):
)

| (™
{rel_op.trn =
(xel_op.opn_type == "timex_op"
-> ["PSDL_TIMER.
4§ [rel_op.left_op," = ",rel op.right_op]
)i
}

| GTE
{rel_op.txn =
(rel_op.opn_type == "timer op"
-> ["PSDL_TIMER.
$# [rel _op.left op," >= ",zel op.right_op])
)i
}

| LTE
{rel op.trn =

(zel_op.opn_type == "timer_op"
-> ["PSDL_’I‘IMER. ‘
t (zel_op.left_op," <~ ",xel op.xight_op]
):
)

| NEQV
{rel_op.tzn =
(rel_op.opn_type =~= "timex OP"™ s 1 4 « i+ W eyl 4 @m 2 aph -
~> ["PSDL_TIMER.
(xel_op.left op," /= ",rel op.right_op)

.
’

}

] ¢t
{rel op.txn =
(rel_op.rxight_op == "NORMAL"
=> (xel _op.parent," SPEC.DS",rel op.left _op,".I5_NORMAL "]
¥ (rel_op.parent,®_ SPEC.DS",rel op.left op,
".IS_EXCEPTION(",xel op.xight_op,") ")

-

sign
®
{sign.trn = "4 %: }

l ot

{sign.trn = "= "; }

{sign.txn = "%;)

-~

- °

APPENDIX N PSDL DATA TYPES
:: File: padl_system.a
== Author: rrxank Palazzo
-~ Date: 15 Dac 8%

-~ Modified: 16 Dec 89 by Laura J. White

with vatrxings, TIMERS;
package PSDL_SYSTEM is

type Int_list is array (1..10) of integer;

package PSDL_STRINGS is new vstrings(50);
subtype PSDL_ENCEPTION is PSDL_STRINGS.VSTRING;
type PSDL_TIMER is new TIMERS.TIMER;

‘ EXCEPTION_ERROR,
BUFFER_UNDERFLONW,

BUFFER_OVERFLOW : exception;

generic
type ELEMENT TYPE is private;

package SAMPLED_STREAM is

task DATA_STREAM is
pragma PRIORITY (10);
entry CHECK (NEW DATA : out BOOLEAN) ;
entry GET {(VALUE : out ELM‘.RT_’!‘!PS);
entry GET (VALUE out PSDL__SYS’I’EM.PSDL__!XC!PTION),‘
entry PUT (VALUE : in ELEMENT TYPE);
entcy PUT (VALUE : in STRING);
entry IS_EXCEPTION (NAME : in PSDL_STRINGS.VSTRING:
CHECK : out BOOLEAN);
entry IS_NORMAL (CHECK : out BOOLEAN) ;

. oo se @

end DATA_STREAM;
end SAMPLED_STREAM;

¢ -

gencrio
type ELEMERT_TYPE is private;

package DATAFLOW_STREAM is

task DATA_STREAM is
pragma PRIORXTY (10);
entzy CHECK (NEW_DATA : out BOOLEAN);
entxy GET {OUTVALUE out ELEMENT TYPE);
entry PUT (INVALUE : in ELEMEN:_?YPE);
and DATA_STREAM;

function FRESH return BOOLEAN;
end DATAFLOW_STREAM;

generxic
type ELEMENT_TYPE is private;
INITIAL VALUE : ELEMENT TYPE;

package SAMPLED STATE VAR is

task DATA_STREAM is
pragma PRIORITY (10):
entxy CHECK (NEW DATA : out BOOLEAN);
entry GET (OUTVALUE : out ELEMENT TYPE);
entry PUT (INVALUE : in ELEMENT TYPE);

end DATA_STREAM;

function FRESH return BOOLEAN;

end SAMPLED_STAYE_VAR;

generxic
type ELEMENT TYPE is private;
INITIAL_VALUE : ELEMENT TYPE;

package DATAFLOW _STATE_VAR is

task DATP,_ STREAM is
pragmsu PRIORITY (1Q);
entry CHECK (NEW DATA out BOOLEAN);
entxy GET (OUTVALUE out ELEMENT TYPE);
entry PUT (INVALUE : in ELEMENT TYPE);
end DATR_STREFM;

s ao

function FRESH rzturn BCOLEAN;
end DATAFLOW_STATE_VAR;

end PSDL_SYSTEM;

270

‘ package body PSOL_SYSTEM is
package body SAMPLED_STR¥AM is
package VSTRING renames PSDL_SYSTEM,PSDL_STRINGS;

type DATA_STREAM MODE is (NORMAL, EXCEPTION);
type ﬁATA_ﬁTREAﬂ_TOKEN {MODE : DATA_ﬁTRlAHLﬂOD! tm NORMAL) is
xecora

INITIALXZED,
NEW_DATA ! BOOLEAN := false;

case MODK is
when NORMAL =>
N_VALUE : ELEMENT TYPK;
when EXCEPTION =>
E_VALUE : PSDL_SYSTEM.PSDL_EXCEPTION;
end case;
end record;

task body DATA_STREAM ia

BUFFER : DATA_STREAM TOKEN;
TempExcp : PSDIL_SYSTEM.PSDL_EXCEPTION;

begin

loop
’ seleact
accept CHECK (NEW_DATA : out BOOLEAN) do
NEW_DATA := BUFFER.NEW_DATA;

end CHECK;

or
accept GET (VALUE : out ELEMENT TYPE) do

if not BUFFER.INITIALIZED then
raise PSDL_SYSTEH.BUF!B&_UNDERFLON;
elsif BUFFER.MODE = EXCPTION then
raise PSDQ_SYSTBM.EXCEPTION_FRROR:
else
VALUE := BUFFER.N_VALUE;
BUFFER.NEW_DATA :=~ false;
end if;
end GET;

ox
accept GET (VALUE : out PSDL_SYSTEM.PSDL_EXCEPTION) do

if not BUFFER.INITIALIZED then
raise PSDL_SYSTEM.BUFFER_UNDERFLOW;
elsif BUFFER.MODE = NORMAL then
raise PSDL_SYSTEM.EXCEPTION ERROR;
else
VALUE := BUFFER.E_VALUE;
BUFFER.NEW_DATA :=~ false;
end if;

o m

end GET;
or
accept PUT (VALUE : in ELEMENT TYPE) do

if (BUFFER.MODE = EXCPTION) and BUFFER,NEH _DATA then

raise PSDL_SYSTEM.EXCEPTION_ERROR;

else
BUFFER := (MODE »> NORMAL,
INITIALIZED w> true,
NEW_DATA => true,
N_VALUE => VALUE) ;
end if;
end PUT;

oxr
accept PUT (VALUE : in STRING) do
-~ VSTRING.assign (VALUE, TempExcp);

BUFFER := (MODE => EXCPTION,
INITIALIZED => true,
NEW_DATA => true,
E_VALUE => Tempkxcp);
end PUT;

or
accept IS_EXCEPTION {NAME : in PSDL_ﬁTRINGS.VSTRING:
CHECK : out BOOLEAN) do
if BUFFER.MODE = EXCPTION then
CHECK = VSTRING.equal(BUFFER.Q_VALUB + NAME)
else
CHECK := false;
end if;
end IS_EXCEPTION;
or
accept IS_NORMAL (CHECK : out BQOLEAN) do
CHECK := BUFFER.MODE = NORMAL;
end IS_NORMAL;
or
terminate;
end select;
end loop;
end DATA_STREAM;
end SAMPLED_ STREAM;

package body DATAFLOW_STREAM is

type DATA STREAM TOKEN is
record
INITIALIZED,
NEW_DATA : BOOLEAN := false;
VALUE ¢ ELEMENT TYPE;
end record;

272

‘ task body DATA_STREAM is

BUFFER : DATA_STREAM TOKEN;

begin
loop
select

acceapt CHECK (NEW DATA : out BOOLEAN)} do

Ntﬂ_phxh HL] BUIFIR.NIQ_pATA;
and CHECK;

ox

accept GEY (CUTVALUE : out ELEMENT TYPE) do
if not (BUFFER.INITIALIZED and BUFFER.NEW _DATA) then

raise PSDL_SYSTEM.BUFrER_UNDERFLOW;
alse
OUTVALUL := BUFFER.VALVUL;
BUrrER.NEW DATA := false;
end if;
end GET;

ox

accept PUT (INVALUE : in ELEMENT TYPE) do

if BUFFER.NIW_DATA then
raise PSDL_SYSTEM.BUFFER_OVERFLOW;

else
‘ BUFFER.VALUL := INVALUE;

BUFFER.NEW_DATA := true;
BUFFER.INITIALIZED := true;
end if;
end PUT;

or

terminate;

end select;
end loop;

end DATA_STREAM;

function FRESH return BOOLEAM is
RESULT : BOOLEAN;

begin
DATA_QTREAM.CHBCK(RESULT);
return (RESULT) ;

end FRESH;

end DATAFLOW_STREAM;

@ -

package body SAMPLED_STATE_ VAR is
type DATA_STREAM_TOKEN dis

rscord
INITIALIZED,
NEW_DATA ¢ BOOLZAN := falae;
VALUE : ELEMENT_TXPE := INITIAL VALUE;

end record;
task body DATA_STREAM ia
BUFFER : DATA_STREAM TOKEN;

begin
loop
select
erccept CHECK (NEW _DATA : out BOOLEZAN) do
NEW_DXTA :w BUFFER.NEW_DATA;
end CHECK;

or
accept. GET (QUTVALUE : cut ELEMENT TYPX) do
if not BUZFER.INITIALIZED then
raise PSDL_SYSTEM.BUFFER_UNDERFLOW;
else
OUTVALUE := BUFFER.VALUE;
BUFFER.NEW DATA := false;
end if;

end GET; ‘

or
accept PUT (INVALUE : in ELEMENI;TYEE) do
BUFFER.VALUE := INVALUE;
BUFFER. INITIALIZED := true;
BUFFER.NEW_DATA 1= true;
end PUT;

or
terminate;
end selact;

end loop;
end DATA_STREAM;

function FRESH return BOOLEAN is
RESULT : BOOLEAN;

begin
DATA_STRERM.CHECK(RESULT);
return RESULT;

end FRESH;

end SAMPLED_STATE_VAR;

™ @

package body DATAFLOW_STATE_VAR is

type DATA_STREAM_TOKEN is

recoxd
INITIALIZED,
REN_DATA ¢ BOOLEAN := false;
VALUE ELBHENE_T!PE = INITIAL_VALUE:

end recoxd;
task body DATA_STREAM is

BUFFER : DATA_STREAM_TOKEN;

begin
loop

select
accept CHECK (NEW_DATA : out BOOLEAN) do

NEW_DATA := BUFFER.NEN_DATA;
end CHECK;

GZ
accept GET (OUTIVALUE : out ELEMENY TYPE) do

if not (BUFFER.INITIALIZED and BUF!ER.N!K_pATA) then
raise PSDL_SYSTEM.BUFFER_UNDERFLOM;
else
QUTVALUE := BUFFER.VALUE;
BUFFER,NEW_DATA := falae;
end 1f£;
end GET;

or
accept PUT (INVALUE : in ELEMENT TYPE) do

if BUF!BR.NEE_pATA then
raise PSDL_SYSTEM.BUFFER_OVERFLON;

else
BUFFER.VALUE := INVALVE;
BUFFER.NEN_DATA :@= true;
BUFFER.INITIALIZED := true;

end if;

end PUT;

or
texminate;
end select;
end loop;
end DATR“§TREAM;

275

function FRESH return BOOLEAN is
RESULT ¢ BOOLEAN;

begin
DATA_ﬁTREAM.CHECK(RESULT);
return (RESULT) ;

end FRESH;

end DATAFLOW_STATE _VAR;

end PSDL_SYSTEM;

276

file:
author:
date:
modified:

APPENDIX O KODIYAK SPFCIFICATIONS FOR STATIC SCHEDULER

pre _as.k

lauca maxlowe

dec 88

dec 89 by lauxa j. white

ldefinitions of lexical clasaes

Sdefine Digit
Ydefine Int

Sdaefine Letter

Mdefine Alpha
Sdefline Blank
$define Char
tdefine Quote

| definitions

! definicvions

GTE
LTE

NEQV

ARROW

TYPE

OPERATOR
SPECIFICATION
END

GENERIC

INPUT

OUTPUT

STATES
INITIALLY
EXCEPTIONS
MAX_EXEC_TIME
MAX_RESP_TIME

MIN_CALL_PERIND

MICROSEC

${0-3)

:{Digit)+
s{a-zA-2_)

s {({Lattex) | {(Digit}))
1 \a}

(701

(")

of white space
:{Blank)+
of compound symbols and keywords

:'>~l

$9Lm"

tH S

>

ttype | TYPE
toperator | OPERATOR
:apecification|SPECIFICATION
tend | ¥ND
tgeneric|GENERIC
:input | INPUT

‘output |OUTRPUT
:atstos | STATES
tinitially | INITIALLY
texceptions | EXCEPTIONS

tmaximum{ Jexecution{)time|MAXIMUM|]EXECUTION([]TIME

tmaximum(| Jresponse|]Jtime|MAXIMUM|[JKESPONSE([)TIHWE

:microses|MICROSEC|us

mn

iminimum(Jcalling{ lperiod|MINIMUM{)CALLING[}RERIOD

S
SEC

MIN

HOURS

BY

KEYRORDS
DESCRIPTION
AXXOM3
IHPLEMENTATION
ADA

GRAEH
DATA_STREAM
TIMER
CONTROL
TRIGGERED
ALL

SOME

PERXOD
FINISH
EXCEPTION
READ

RESET

START

STOP

IF

HOT

AND

OR

TRUE

FALSE

0
STRING_LITZRAL

INTEGER_LITERAL

REAL_LITERAL
TEXT

sy MG

t98c|SEC

smin {MIN

shours | HOURS [hxa |HRS he | HR
byl Jrequizements|BY[)REQUIREMENTS
tkeywords | KEXNORDS
;deacxiption|DESCRIPTION
saxioma | AXIOMS
rimplementation| IMPLEMENTATION
sudajAda]ADA

sgraph|GRAPH

tdatal Jakream|DATA;)STREAM
ttimer | DIMER

scontrol{ Joonstraints|CONTROL{)CONSTRAINTS
ttziqyered ! TRIGGERED

thy(1alXi8¥{ JALL

byl YgomuiBY([JSOME
rpexcind | RERIOD

tfinigh{)within|FINISH(JWITHIN
rexception| EXCERTION

:xead{ }timex|READ(]JTIMER
sreset{ jciaex|RESET! JTIMER
satart()eimex|START[]TIMER
istopi ltimez{$TOP(JTIMER
+if|XF

sN=n ' "nGh"l“NC’I‘"
sRC"{"and" | "AND"
x'l"l"or"l"OR"‘

ttxue|TRUE

:false|FALSE

: {Lettex] (Alpha)*

: (Quote) {Chax)*{Quote)

:{Int)

t{Int)}v."{Int}

s {"(Char)}An}n

{ operator precedences
1 %left mueans group and evaluate from the left

Sleft OR;
Sleft AND;
tleft NOT;
sleft

tleft tet;
L 17

1<, t>t, !'mf, GTE, LTE, NEQY;

278

| attribute declarations for nonterminal symbols

start { txn: string; };
padl (txn: string;);
component { trn: atring;
data_type { trn: string;
operatox (trn: string;):
type_spec { txn: string; };

type_decl) _liast (trn: string;);

type_decl { trn: string: };

op_spec_0_list (txn: stxing; };

operator spec { trn: atxing;);

intexface { trn: string; };

attxibute { txn: string; };

time {(txn: string;);

unit {(value: int;);

id_list { txn: atxing; };

reqgmta_trace { txn: stxing; }:

functionality { txn: string; };

keywords { trn: string; };

informa) desc { txn: stxing; });

formal desc { txn: string; };

type_impl (txn: string; }:

op_impl 0 _list (trxn: string;);

operator_impl { txn: stxing; children: string:):
padl_impl (txn: string; children: stxing; };
data_flow_diagram { txn: string; };

link 0 list { txn: strxing; };

link { trn: string; }:

opt_time { txn: stxing;);

streams (trn: string; };

type_name { trn: strxing; };

timers { txn: stxing:);

et
e we

control constrxaints { txn: string; children: stxing;);
constxaint_options (trn: string; children: string;):

opt_tzxig (txn: stxing:; };

trigger (trn: string;);

opt_per (txn: string: };
opt_fin w (trn: string;);
timex_op (trn: string; };
opt_if_predicate { trn: string; };
predicate { trn: atring; };
expression list { trn: string; };
oxpression { txn: string; };
relation {txn: string;):
simple_expression { txn: stxing; };
exception_expr {trn: string; }:
rel op {trn: string; };

sign (trn: string;);

279

jattribute declaxations for terminal aymbols

ID{ \text: atxing;);

TEXT(Stext: string; };

STRIHZ LITERAL{ Stext: atring;);
INIEGBR_ﬁITBRAL(Stext: string;)
REAL_LITERAL{ Stext: atxing;);

L1

{psdl grammar

start
s padl
{ Moubput (padl.txn); }

.
’

padl
: psdl component
{ pasdl{l].txn = {psdi{2].txn,component.trn); }
|
{ psdl[l].txn = ®%:)

¢
component

: data_type

{ component.trn = data_type.trn; }
| operator

{ component.trn = operatorx.txn;)

.
¢

data_type
¢ TYPE ID type_spec type_impl
{ data_type.trn = [type spec.trn,type impl.txn]; |}

operator
¢ OPERATOR 1ID operator_ spec ovperator_ impl
{ operator.trn = ["LINEAGE®,"\n",ID.S%text,"\n",
operator_impl.children, "END LINEAGE®,"\n",
ID.%text, "\n*,operator_spec.trn,
operator impl.txn];)

.
1

type_spec
¢ SPECIFICATION type decl 1 list op_spec_0_list functionality END
{ type spec.trn = op_spec_0_list.txn;)

.
’

280

. type_decl 1 list
t type_decl

{ typc_(IGCl_l_liat.t:n - tYP._d.cl.hxn;)
i
(type_decl 1 _list.txn = "%;)

.
[4

type_decl
: id list ‘'’ type_name
(type_decl.txn = id_list.txn;)
| id_list 7:’ type name ’,’ type_decl
{ type_decl.trn = [id_liat.txn,type_decl.txn];)

e

op_spac_0 liat
: op_spec_0_list OPERATOR ID operatox_spec
{ op_spec_0_list(l]).txn = [op_spec_0_list(2]).txn,ID,Stext,"\n",
operator_spec.trn};)
]
(op_spec_0_list.trn = "%;)

.
¢

operator spec
t SPECIFICATION interface functionality END

. ' nperator_spec.txn = interface.trn;)

intex. .
¢ inkazrcla.e attribute regmts_trace
{ interface(l).trn = [interface{2).trn,attribute.txn);)
|

{interface.txn = "";)

»
14

attribute
: GENERIC type_decl
{ attribute.trn = *%; |}
| INPUT type_decl
{ attxibute.txn = ww=.)
| OUTPUT type_decl
{ attribute.trn = *%; |}
| STATES type_decl INITIALLY exprassiovn_list
{ attribute.txn = [“STATE","\n",type_decl.trn, *"ENDSTATE","\n"};)
| EXCEPTIONS iq_list
{ attribute.trn = "%; |
| MAX_EXEC_TIME time
{ attribute.crxn = ["MET®,"\n%,time.tzn,"\n"};)
| MIN_CALL_PERIOD time
{ attribute.trn = ["MCP","\n%,time.txn,"\n"}); }
| MAX_RESP_TIME time

® -

{ attribute.tzn = ["MRT","\n", time.txn,"\n");)

'

id_list
: ID /,' id_lat
{ id_list{l).trn = [ID,.Stext,"\n",id list(2]).txn) ;)
| ID
{ id_xist(l).txn = [(ID.%text,"\n"};)

.
]

time
INTEGER _LITERAL unit
{ time.trn = i2s(a2i (INTEGER_LITERAL.Atext)funit,value); }

e

unit
s MICROSEC
{ unit.value = 1; }
| MS
{ unit.value = 1000; }
| SEC
{ unit.value = 1000000; }
| MIN
{ unit.value = 60000000;)
| HOURS
{ unit.value = 3600000000;)

|
(unit.value = 1000;) ‘

reqmts_trace
: BY id_list
{ reymts trace.trn = "";)

{ xegqmts_trace.txn = “%; |

.
’

functionality
¢ keyworda informal desc £6rmal_ﬂeac
{ functionality.trn w "®.)

.
’

keywords
¢ KEYWORDS id_list
{ xeywords.trn = "\n"; |
i

{ keywords.txn = ®%; |

.
[4

s ®

informal_desc
¢ DESCRIPXION TEXT
{ informal desc.txn = "\n";)
|
(informal_desc.txn = "%;)

.
¢

formal_desc
¢ AXIOMS TEXT
(formal desc.txzn = "\n*; |}
|
{ formal_desc.txn = "";)

-
L

type_impl
: IMPLEMENTATION ADA ID END
{ type_impl.txn = [ID.Stext,™\n"}; }
| IMPLEMENTATION type name op_impl 0_list END
{ type_impl.trn = op_impl 0_list.txn;)

.
¢

op_impl 0_list
¢ op_impl O_list OPERATOR ID operatox_impl
{ op_impl O list(l).txn = (op_impl O_list(2).txn,ID.Stext,"\n",
cpexator_impl.trn);)
|
{ op_impl 0 _list(l).txn = *%;)

.
’

operator_impl
¢ IMPLEMENTATION ADA ID END
{ operator_impl.trn = {ID.Stext,"\n");
operator_impl.children = [“ATOMIC®,"\n");)}
| IMPLEMENTATION psdl_impl
{ operator_impl.trn = padl_impl.trn;
operator_impl.children = psdl impl.children;}

.
’

psdl_impl
¢ data_flow_diagram streams timers control_constraints informal desc END
{ padl_impl.trn = (data_flow diagram.trn,control constrainte.txn)};
padl_impl.children = control_constraints.children;)

data_flow_diagram
¢ GRAPH link_0_list
{ data_flow diagram.trn = link 0 _list.trn;)

.
’

link_0_list
: link_0_list link
{ link_0_list(l].trn = [link_0_list(2].txn,link.txn};)

]
{ link_0_list.txn = "%; |

.
]

link
: ID !.!' ID opt_time ARROW ID
{ link.txn = ["LINK","\n", ID(1).Stext,"™\n",ID{2).%text,"\n",
opt_time.txn,"\n",ID(3).%text,"\n"]; }
opt_time

¢ time
{ opt_time.txn = time.txn;]
|

{ opt_time.txn = “0%";)

.
¢

streams
¢ DATA_STREAM type_decl
{ streams.txn = "%; |}

{stxeams.txn = "";)

| ®
type_name

: ID /(’ type_decl)’

{ type_name.txn = "" ;]
| ID

{ type_name.txn = "" ;)

.
[

timers
: TIMER id list
{ timers.trn = """ ;

.
—

|
_{timers.txn = wne)

.
[

control_constraints
¢ CONTROL
{ control constraints.txn = "%;
control_constraints.children ="";]
| CONTROL OPERATOR ID opt_trig opt_per opt_fin w constraint_options
(control_ponstraints.trn - [ID.ttext,'\n",opt_per.t:n,op;_fin_y.t:n,
constraint_options.trn};
control_constraints.childxen = [ID.%text, *\n",
constraint_options.children];)

- °

|
{contxol_constraints.txn = *%;
control_conatraints.children = *%;)

.
*

constxaint_optiona
! OUTRUT id_list Ir predicate reomts trace constraint_options
{ conatraint_options(l).txn = constraint_options(2].txn;
constraint_options.children = constraint_options{2].children;)
| EXACEPTION ID opt_if predicate regmts_trace conatxaint_options
{ conatxaint_options(l].txn = constxaint_opticns(2).txn;
conatraint_options.children = constraint_options(2).children;)
| timexr_op ID opt_if predicate regmts_trace constxaint options
{ conatraint_optiona(l).txn = constxaint_options(2).txn;
constraint_options.children = conatxaint_options(2].children;)
| OPERATOR ID opt_trig opt per opt Xin_w constraint_options
{ constrxaint_optiona(l).txn = (ID.Stext,"\n",opt pex.txn,
opt_fin w.tzn,constxaint_options{2).txn);
conatraint_cptions.children = [ID.Stext, *\n",
constraint_optiona(2].children)?)

{ constraint_options.txn = *%;
constraint_options.children = "%;)

~

opt_txig
! TRIGGERED trigger opt_if predicate reqmts trace
{ opt_trig.txn = "%; |}
|
{opt_txig.txn = "%;)

.
?

triggerx
¢ ALL id_list
{ triggex.txn = *%;)
| SOME id list
{ txigger.trn = *%;:)

I
{triggexr.txn = "%;)

.
’

opt_per
:PERIOD time reqmts_trace
{ opt_per.trn = ["PERIOD","\n",time.trn,"\n"]; }
!
{ opt_per.trn = "%; |

¢
opt_fin w

: FINISH time reqmts_trace
{ opt_f£in w.txn = [“WITHIN®,"\n",time.trn,"\n"}; }

285

|
{ opr_£in_w.txn = ""; |

¢’

timax_op
: READ
{ timer op.txn = "%; |
| RESET
{ timer_op.txn = "*; |
| START
{ timex_op.txn = "";)
| sToP
{ timer_op.txn = "%;)

.
14

opt_if predicate
: IF predicate
{ opt_if predicate.trn = "%; |

|
{opt_if_ predicate.trn = *%; |}

-

expression list
: expyession
{expression list.txn = "%;)
| expression ’,’ expreasion_ liast
{expression_list{l]).txn = "%; |

-
’

expression
¢ INTEGER_LITERAL
{expression.txn = "%; |
{ R!AL_LITERAL
{expresrion.tizn = "%; j
| STRING_LITERAL
{expression.txn = "%;)
| TRUE
{expresaion.trn = %,)
| FALSE
(expression.tzn = "%;:)
| ID
{expreasion.trn = "%;)
| type_name /.’ ID /(' expression_list ’)’
{expression.txn = "#;)

~e

predicate

relntion

-
.

.
¢

relation

(predicate.txn = "%; |
relation AND predicate
{predicate{l] .txn = "**; |}
relation OR predicate
{predicaze(l) .txn = "";)

simple_expression rel op aimple_sxpression
{relation.txn = "". |

simple_expression

(relation.trn = "% |}

simple expression

-~

rel op
1 l<’

sign INTEGER_LITERAL unit
(simple_expression.txn = "%;)
sign REAL_LITERAL
{simple_expression.txn « *";)
1D

{simple_expression.txn = "%;:)
STRING_LITERAL
{simple_expression.txn = *%;)
!t (* predicate ’)’
{simple_expression.trn = **;: |
NOT ID

{simple_expression.trn = "%;)
NOT ! (! predicate ’)’
{simple_expression.trn = "%; }
TRUE

{simple_expression.txn = *%;)
FALSE

{simple expression.txn = *%;)
NOT TRUE
{simpie_expression.txn = *%;)
NOT FALSE
{simple_expression.trn = "%;)

{xel op.txn = "%; |}

>t

(rel_op.txn = "%; } ° .

ot

{rel op.trn = "¥; |

GTE

{rel_op.trn = ®*%;)

287

aign

| LTE
{zel_op.txn » "% |}
| HEQV
(zel_op.txn = *%;]
' 0:'
{zxe)_op.txn = "*;)
H

A N
{sign o = ""; |
l ot

lsigr m o~ "%,]

{algn.tzn = =% |

-

Fhicid

IEI0. S WU P AL TP TN

APPENDIX P STATIC SCHEDULER DRIVER

-~ file: driver.a
-~ anthox: murat kilic
-- date: nov 89

-~ modified: 26 dec 89 by laura j. white

- - o - -

with TEXT XO;

with FILES; use rILES;

with l‘ILt_PROCBSSOR:

with EXCEPTION_MANDLER;
with TOFOLOGICAL_SOATER;
with HARMONIC BLOCK BUILDER;
with OPIMTOR_SCHBDULER;

procedure STATIC_SCHEDULER is

THE_GRAPH : DIGRAPH.GRARM;
PRECEDENCE LIST : DIGRAPH.V_LISTS.LIST;
SCH_INRUTS ! SCHEDULE_INPUTIS_ LIST.LIST;
AGENDA ¢ SCHEDULE_INPUIS_LIST.LIST;
BASE_BLOCK : INTEGER;
H_B_LENGTH : INTEGER;
STOP_TIME ¢ INTEGER := 0;

begin

FILE_PROCESSOR.SEPARATE_DATA (THE_GRARN);
FILE_PROCESSOR.VALIDATE DATA (THE_GRAPH) ;
TOPOLOGICAL_SORTER.TOPOLOGICAL_SORT (THE_GRAPM, PRECEDENCE LIST);
HARMONIC_BLOCK_BUILDER,CALC_PERIODIC_EQUIVALENTS (PRECEDENCE_LIST);
HARMONIC_BLOCK_BUILDER.FIND_ BASE_BLOCK (PRECKDENCK_LISY, BASE_BLOCK);
HARMONIC_BLOCK_BUILDER.FIND_BLOCK_LENGTH (PRECEDENCE_LIST,H_B_LENGTH) ;
OPERATOR_SCHEDULER.TEST_DATA (PRECEDENCE_LIST, H_B_ LENGTIH);
loop
if NOT(TEST_VERIFIED) then
TEXT_XO.PUT({"Although a schedule may be possible, there is no %);
TEXT_IO.PUT_LINE ("guaxantee that it will execute");
TEXT_IO.PUT_LINE("within the required timing constraints.®);
TEXT_XO.NEW_LINE;
end if;
begin
OPERATOR _SCHEDULER.SCHEDULE_INITIAL SET
(PRECEDENCE_LIST, SCH_INPUTS,H_B_LENGTH, STOR_TIME):;

289

- we

OPERATOR_SCHEDULER, SCHEDULE_REST_OF BLOCK

(PRECEDENCE_LIST, SCH_INPUTS,H_B_LENGTH, STOP_TIME) ;
OPERATOR_SCHEDULER.CREATE_STATIC_SCHEDULE

(‘THE_GRAPH, SCH_INPUTS, H_B_LENGZH);
TEXT JO.PUT{*A feaaible achedule found, ");

TEXY_XO0.PUT_LINE ("the Harmonic Block with Precedence %);
TEXT_IO.EUT_LINE(™ Constxaints Scheduling Algorithm Used. ®);
SCH_INPUTS := null;
exdt;

axception

whan OPERATOR SCHEDULER.MXSSED DEADLINE =>
null;

when OPERATOR_SCHEDULER,OVER TIME =
null;

end;

begin
HARMONIC_RLOCK BUILDER,CALC PERIODIC_EQUIVALENTS
(THB_GHAPR.VER?ICES):

OPERATOR_SCHEDULER.SCHEDULY_WITH_EARLIEST_START
(THE_GRAPH, AGENDA, H_B_LENGTH) ;

OPERATOR_SCHEDULER.CREATE_STATIC_SCHEDULE
(THE_QRAPK,AGENDA,H_Q_L!NGTH):

TEXT_XO.PUT_LINE{"A feasible achedule found, the Earlieat Start®);

TEXT_XO.PUT_LINE ("Scheduling Algorithm Used. *);

AGENDA := null;

exit;
exception .
when OPERATOR;§CHBDULER.HISSED_pEADLIN! L
null;
when OPERATOR _SCHEDULER.OVER_TIME s>
null;
end;

begin
OPERATOR_SCHEDUL!R.SCHIDULlLﬂI?&_EARLIESQ_pEADLINE
(THE_GRAPH,AGENDA,H_B_LENGTH) ;
ORPERATOR_SCHEDULER.CREATE_STATIC_SCHEDULE
(THE_GRAPH, AGENDA, H_B_LENGTH) ;
TEXT_IXO.PUT_LINE(“A feasible schedule found, the Earliest *);
TEXT_XO.PUT_LINE (“Deadline Scheduling Algorithm Used. ®);
AGENDA := null;
exit;
exception
when OPERATOR _SCHEDULER.MISSED DEADLINE =
null;
when OPERATOR_SCHEDULER.OVER_TIME =>
null;
when OPERATOR_SCHEDULER.MISSED OPERATOR =>

null;
®

end;

‘ end loop;

exception
when FILE_PMUCESSOR.CRIT_OP_LACKS_MET =>
EXCIZPTION HANDLER.CRIT_O_L MET(Except ion_Operatorx);

when FILE_PROCESSCR.MET_ NOT_LESS THAN_PERIOD ~>
EXCEPTION HANDLER.MET N_YL_T PERXOD (Exception Opexator);

wher: FILE_PROCESSOR.MET_NOT_LESS_THAN MRT =>
EXCEETION_HANDLER.MET_N_L T MRT (Exception_Operator);

when FILE_PROCESSOR.MCP_NOT_LESS_THAN_MRT =>
IXCEPTION HANDLER.MCPE_N_L_T_ MRT (Exception Opexator);

when FILE _PROCESSOR.MCP_LESS_ THAN_MERT =>
EXCEPTION_HANDLER.MCP_L T _MET (Exception_Operator);

when FILE_PROCESSOR.MLT_IS_GREATER_THAN_FINISH _WITHIN =>
EXCEPTION_MANDLER.MET X _G_T_FINISH WITHIN (Exception_Operator):

rthen FILE _PROCESSOR.SPORADIC_OP_LACKS_MCP «=>
EXCEPTION_HANDLER.SPORADIC_O_L MCP (Exception_Opexator);

when FILE_PROCESSOR.SPORADIC_OP_LACKS_MRT =>
‘ EXCEZPTION_HANDLER,SPORADIC_O_L MAT (Exception_Operator);

when SCHEDULE_INPUTS_LIST.BAD_VALUE =>
EXCEPTION HANDLER.S_I_L_BAD_VALUE;

when DIGRAPH.V_LIST3.BAD VALUL =>
EXCEPTION HMANDLER.V_L BAD_VALUE;

when DIGRAPH.E_LISTS.BAD VALUE w=>
EXCEPTION HANDLER.E L BAD VALUE;

when HARMONIC_BLOCK_BUILDER.NO_BASE_BLOCK =
EXCEPTION_HANDLER.NO_B_BLOCK;

when HARMONIC_BLOCK BUILDER.NO_OPERATOR IN_LIST =>
EXCEPTION HANDLER.NO_OP_IN_LIST;

when HARMONIC BLOCK BUILDER.MET NOT LESS_THAN_PERIOD =>
EXCEPTION_HANDLER.MET N _L_T PERIOD (Exception_Operator):;

end STATIC SCHEDULER;

®

APPENDIX Q STATIC SCHEDULER ERROR HANDLER

e @4 B0 ow o S0 4% 00 FE e B4 - S 0 PR e P P 8 S G St B W A PO T S u - - - - -

-~ £ile: e_handler 3.a
~= authox: muzat kilic
-= date: nov 89

-~ modified: dec 89 murat kilic

with FILES; use FILES;

package EXCEPTION HANDLER is
procedure CRIT_O_L_ MET(Exception Operator : in OPERATOR_ID);
proceduxe MET N L T PERIOD (Exception_Opexator : in OPERATOR_ID);
procedure MET_N_L T MRT (Exception Operator : in OPERATOR_ID);
procedure MCP_N_L_ T _MRT (Exception Operator : in OPERATOR_ID):

procedure MCP_L_T MET(Exception Operator : in OPERATOR_ID);

procedure MET I _G_T_FINISH_WITHIN (Exception Operator : in OPERATOR ID);

procedure PERIOD_L T FINISH WITHIN(Exception Operator : in OPERATOR_ID):

procedure SPORADIC_O_L MCP (Exception_Operator : in OPERATOR_ID);
procedure SPORADIC_O_L MRT(Exception_Operator : in OPERATOR_ID);
procedure S_IX_L_BAD_VALUE;

procedure V_L_BAD_VALUE;

procedure E_L BAD_VALUE;

procedure NO_B_BLOCK;

procedurxe NO_OP_IN LIST;

end EXCEPTION_ HANDLER;

292

APPENDIX R STATIC SCHEDULER ERROR HANDLER

file: e¢_handler b.a
author: murat kilic
date: nov 89

modified: dec 89 by muxat kilie

wi
wi

pa

th TEXT_IO;
th FILES; use FILES;

ckage body EXCERTION HANDLER 1is

procedure CRIT O_L MELT(Exception Operator : in OPERATOR_ID) is
begin

TEXT_XO.PUT ("Critical Operator ");

VARSTRING.PUT (Exception_Operator);

TEXT_JO.PUT_LINF (™ must have an MET");
end CRIT_O_L MET;

procedure MET N_L T PERIOD (Exception Operxator : in OPERATOR_ID) is
begin
TEXT_XO.PUT ("MET is greater than PERIOD in operator %);
VARSTRING.PUT_LINE (Exception Operator);
end MET N_L T PERIOD;

procedure MET N L T MRT(Exception_Operxator : in OPERATOR_ID) is
begin
TEXT_XO.PUT ("MET is greater than MRT in operator %);
VARSTRING.PUT LINE (Exception Operator):
end MET N_L_T_MRT;

procedure MCP_N_L T MRT(Exception Operxator : in OPERATOR_ID) is
begin
TEXT_IXO.PUT ("MCP is greater than MRT in operator ");
VARSTRING.PUT_LINE (Exception Operator);
end MCP_N_L_T MRT;

procedure MCP_L_T MET (Exception_Operator : in OPERATOR_ID) is
begin
TEXT_IO.PUT ("MCP is less than MET in operator “);
VARSTRING.PUT_LINE (Exception Operator):;
end MCP_L_T MET;

293

(Exception_Operxator : in OPERATOR_ID) is

procedure MET_X_G _T_FINISH WITHIN .

begin
TEXT_JO.PUT ("MET is greater than FINISH WITHIN in opexator %);
VARSTRING.PUT_LINE (Exception_Opexatox);

end MET_X_G_T_FINXSH_WXTHIN;

proceduxe PERIOD_L T FINISH _WITHIN
(Exception_Operatox : in OFERATOR_ID) ia
begin
TEXT_XO.PUT ("Pexiod is less than FINISH WITHIN in operator *);
VARSTRING.PUT_LINE (Exception Operator);
end PERIOD_L T FIRISH WITHIN;

procedure SPORADIC O L MCP (Exception Operator : in OPERATOR_ID) ia
begin

TEXT_XO.PUT ("Sporadic Operator ");

VARSTRING.PUT (Exception Operator);

TEXT_XO.PUT_LINE (" must have an MCE");
end SPORADIC_O_L_MCP;

procedure SPORADIC_O_L MRT (Exception_Operator : in OPERATOR_ID) ia
begin
TEXT_IO.PUT ("Sporadic Operator ");
VARSTRING.PUT (Exception Operator);
TEXT_IO.PUT_LINE (™ must have an MRT");
end SPORADIC_O_L MRT;
procedure S_I L BAD_VALUE is .
begin
TEXT_IO.PUT ("You try to get a schedule input where your pointer %);

TEXT_XO.PUT_LINE ("is pointing a null recoxd.®);
end S_I L_BAD VALUE;

procedures V_L_BAD_VALUE is

begin
TEXT_IO.PUT ("You try to get an operator where your pointex ");
TEXT_IO.PUT_LINE ("is pointing a null recoxd."};

end V_L_BAD_VALUE;

proceduxe E_L BAD VALUE is

begin
TEXT_XO.PUT (“You try to get a link data where your pointer ");
TEXT_JO.PUT LINE ("is pointing a null recoxd.");

end E_L_BAD_VALUE;

procedure NO B BLOCK i

begin
TEXT_IO.PUT_LINE ("There is no BASE BLOCK in this system.®):;

end NO_B_BLOCK;
294 ‘

procedura NO_OP_IN_LIST is
begin

TEXT_XO.PUT_LINE ("There is no CRITICAL OPERATOR in this aystem ™
end NO_OP_IN_LISY;

end EXCEPTION_ HANDLER;

295

APPENDIX S STATIC SCHEDULER GLOBALS

-~ f£ile: filea.a
-= author: mucat kxilic
~= date: oct 89

-- modified: dec 89 by laura j. white

with VSTRINGS;
with SEQUENCES;
with GRAPNS;

package FILES 1a

package VARSTRING is new VSTRINGS (80);
use VARSTRING;

subtype OPERATOR ID is VSTRING;
subtype VALUE i3 NATURAL;
subtype MET is VALUE;
subtype MRT is VALUE;
subtype MCP is VALUE;
aubtype PERIOD is VALVUE;
subtype WITHIN is VALUE;
subtype STARTS ls VALUE:
subtype STOPS is VALUE;
subtype LOWERS is VALUE;
subtype UPPERS is VALUE;

Exception_Operator : OPERATOR_ID;
TEZST_VERIFIED : BOOLEAN := TRUE;

type OPERATOR is

record
THE_OPERATOR_ID : OPERATOR_ID;:
THE_MET : MET 1=)
THE_MRT ¢ MRT t= 0;
THE_MCP t MCP t= 0;
THE_PERIOD ¢ PERIOD := Q;
THE_WITHIN : HITHIN = O;

end record;

package DIGRAPH is new GRAPHS (OPERATOR);

296

. type SCHECULE_INPUTS is

record
THE_OPERATOR : OPERATOR_ID;
THE_START 3 STARTS := 0;
THE_STOP : STOPS = 0;
THE_LOWER t LONERS := Q;
THE_UPPER ¢ UPPERS := 0;

end xecoxd;
package SCHEDULE_INPUTS LIST is new SEQUENCES (SCHEDULK_ INPUTS);

type OP_INFO is

recorxd
NODE ¢ OPERATOR;
SUCCESSORS ! DXGRAPH.V _LISTS.LIST;
PREDICESSORS : DIGRAPMN.V LISTS.LI3T;

end record;
package OP_INro_LIST is new SEQUENCES (OP_INFO):;

end FILES;

@ -

cf ki

APPENDIX T STATIC SCHEDULER FILE PROCESSOR

- nn oy on ov o - n e v v) = wn Be an G O o o oo - - - —a o o oy

-~ file: fp_s.a

-~ authors: laura marlowe
- mucat kilic
-- date: nov B89

A o - G O ST a0 Bk G B e G G T S Y By e G S S G e W S s a0 ws Gt Pa 0 S0 G Tn 0 0 p

with FILES; use FILES:
package FILE PROCESSOR ia

procedure SEPARATE DATA (THE_GRAPH : in out DIGRAPH.GRARN):

procedure VALIDATE_DATA (THE_GRAPH : in out DIGRAPH.GRAPRH);

CRIT_OP_LACKS_MET : exception;
MET_NOT_LESS_THAN_PERIOD : exception;
MET_NOT_LESS_THAN_MRT : exception;
MCP_NOT_LESS_THAN_MRT : exception;
MCP_LESS_THAN MET ¢ exception;
MET_XS_GREATER_THAN_FINISH_WITHIN : exception;
SPORADIC_OP_LACKS_MCP ¢ exception;
SPORADIC_OP_LACKS_MRT ¢ exception;
PERIOD_LESS_THAN_FINISH WITHIN ¢ exception;

end FILE_PROCESSOR;

298

-y

APPENDIX U STATIC SCHEDULER FILE PROCESSOR

file: fp b.a

author: lauxa maxlowe
murat kilic

date: oct 8%

modified: dec 89 by laura j. white

Wi
wi

th TEXT_10;
th FILES; use FILES;

package body FILE_PROCESSOR ia

procedure SEPARATE DATA {THE_GRAPH : in out DIGRAPM.GRAPH) is

~= This proceduxe reads the output file which has the link

=~ information with the Atomic operators and depending upon

<= the keywords that axe declared as constants sepaxates the

-~ information in the file and storxes it in the graph data

-- structure, where GRAPH has the operxator and link information

- in Lto

package VALUE_ IO i2 new TEXT_XO.INTEGER_XO(VALUE);

MET : constant
MRT ! constant
MCP : constant
PERIOD : constant
WITHIN : constant
LINK ¢ conatant
ATOMIC : conatant
EMPTY : constant
Current_Value :
New_Stream :
New_Word :
Cur_Opt :
Cur_Link :
NON_CRITS

INPUT
OUTPUT

VARSTRING.VSTRING := VARSTRING,VSTR("MET®);
VARSTRING.VSTRING := VARSTRING.VSTR("MRT");
VARSTRING.VSTRING := VARSTRING.VSTR("MCP®);
VARSTRING.VSTRING := VARSTRING,VSTR("PERIOD");
VARSTRING.VSTRING := VARSTRING.VSTR("WITHIN®);
VARSTRING.VSTRING := VARSTRING,VSTR("LINK®);
VARSTRING.VSTRING := VARSTRING.VSTR("ATOMIC");
VARSTRING.VSTRING := VARSTRING.VSTR("EMPTY");
VALUE;

DIGRAPH.DATA_STREAM;

VARSTRING.VSTRING;

OPERATOR;

DIGRAPH.LINR_DATA;

: TEXT_IO.FILE_TYPE;
AG_OUTFILE : TEXT_IO.FILE_TYPE;
: TEXT_IO.FILE_MODE :=~ TEXT IO.IN FILE;
: TEXT_IO.FILE_MODE :~ TEXT_IO.OUT_FILE;

299

PRINT_EDGES : DIGRAPH.E LISTS.LIST;
81, 52, I} : DIGMNI.V_L’ISTS.LIST: ‘
1, 1Ip2 s OPERATOR;
START_NODE ! OPERATQER:
END_NODE : ORERNTORX;
procedure INXTIALXZE _OPERATOR (OP : in out OPERATOR) is
begln
0B THE_MET ' H
OP . THE_MAY L H
OP.THE MCP :w 0;
OP.THS_EERIOD sm 02
OP (THE_WITHIN ire 0;
and;
begin

TEXT_XO.OPEN (AG_OUTFILE, INPUT, "/n/suna2/worxk/caps/prototypes/atosdic.info");
TEXT_XO.CREATE (HON_CRITS,CUTLUT, "/n/suns2/woxk/capa/prototypes/non_cxits”);
VARSTRING.GET_LINE (AG_OUTFILE, Naw_Word);

while not TEXT_YO.END_OF_FILE(AG_OUTFILE) loop

L€ VARSTRING.EQUAL (New _Woxd,LINK) then
START_NODE.THE_OPERATCGR_ID :» EMPTX;
END_NODE.THE_OPERATOR_XD :m EMPTY;
DIGRAPH.V_STRING.GET_LINE (AG_OUTFILE,New_Stream);
Cux_Link.THE_DATA_STREAM :=~ New_Stxeam;
VARSTRING.GET _LINZ (AG_OUTFILE, New_Woxd):
L1 :w THE_GRAPH.VERTICES; .
while DIGRAPH.V LISTS.NON_ENPTY(L1) loop
if VARSIRING.EQUAL(DIGRAPN.V_pISIS.VALU:(Ll).THE_Q!!!ATOI;}D,Ncw_ﬁo:d)
then
START_NODE :w DIGRAPH.V_LISTS.YALUE(LLY);
exit;
end 1f£;
DIGRARPH.V_LISTS.NEXT(L1);
end loop;
VALUE_XO.GET (AG_OUTFILE, Current Value);
TEXT_10.SKIP_LINE (AG_OUTFILE);
Cux_Link.THE_LINK MET := Current Value;
VARSTRING.GET_LINE (AG_OUTFILE, New_Word);
L1 := THE GOAPH.VERTICES;
ihile DIGRAPH.V_LISTS.NON_EMPTY(L1) loop
if VARSTRING.EQUAL (DXGRAPH.V_LYSTS.VALUE {L1) +THE_OPERANTOR_ID, }{ew_ﬂo:d)
then
END_NODE i~ DIGRAPH.V_pISTS.VALUE(Ll);
exit;
end 3£;
DIGRAPH.V_LISTS.NEXT({Ll1);
end loop;

~= when eitlier starting node or ending node of a 1ink is

- °

EXTERNAL, the link information will not be added to the
-= graph. Aasuming that all extarnal data coming in is rxeady
~= at atart time, .

LE VARSTI\ING.NOT!ZQUAL(SIART_NOOE.TNE_OPIMTOR_ID, KMPTY) and
VARSTRING . NOTEQUAL (END_NOOE . THE_OPERATOR_XD,EMPTY) then
DIGRAPH.V_LISTS.ADD (START_NODE, Cur_Link.THE_FIRST OP_XD);
DIGRAPH.V_LISTS.ADD (END_NODE, Cur_Link.THE_SECOND OP_ID);
DIGRAPH.ADD (Cux_Link, THE_GRAPH);
end 1f;
VARSTRING.GET_LINE ({ AG_OUTFILE, New_MNord);

elsif VARSTRING.EQUAL (New_Word, ATOMIC) then
VARSTRING.GET_LINE (AG_OUTrILE, Ncu_ﬂo:d):
Cur_Gpt.THE _OPERATOR XD := New_Word;
VARSTRING.GET_LINE (IG_OUTI‘ILI, Ncw_"ord);
ir (VARSTRING.!QUAL(Ncw_ﬂo:d, ATOMIC)) ox
(VARSTRING.EQUAL (New_Woxd, LINK)) or
(TFXT_IO.!ND_O!‘_!‘ILB (AG_OU‘H‘IL!)) then
VARSTRING.PUT_LINE (NON_CRITS, Cur_Opt.THE_OPERATOR 1D);
elae
while VARSTRING.NOTEQUAL (New_Woxd, ATOMIC) and
VARSTRING.NOTEQUAL (New_Word, LINK} and
not TEXT_IO.END_OF FILE(AG_OUTFILE) loop

if VARSTRING.EQUAL (New_Woxd,MET) then
VALUE_XO.GET (AG_OUTFILE,Curxent_Value);
TEXT_XO.SKIP_LINE (AG_OUTFILE);
Cur_Opt ,THE_MET := Current_Value;

elaif VARSTRING.EQUAL (New_Woxd,MRT) then
VALUE_XO.GET (AG_OUTFILE,Cuxxent_Value);
TEXT_XO0.SKIP_LINE (AG_OUTFILE);
Cur_Opt.THE_MRT:= Currxent_Value;

alsif VARSTRING.EQUAL (New_Woxrd,MCP) then
VALUE_IO.GET (AG_OUTFILK,Cuxxent_Value);
TEXT_XO.SKIP_LINE (AG_OUTFILE);
Cur_Opt.THE _MCP := Current_Value;

elsif VARSTRING.EQUAL (New_Word,PERIOD) then
VALUE_XO.GET (AG_OUTFILE,Current_Value);
TEXT_IC.SKIP_LINE (AG_OUIFILE);
Cur_Opt.THE PERIOD := Current_Value;

elsif VARSTRING.EQUAL (New_Word,WITHIN) then
VALUE_XO.GET (AG_OUTFILE,Current_Value);
TEXT_XO.SKIP_LINE(AG_ OUTFILE);
Cur_Opt.THE WITHIN :~ Current_Value;

end if;

301

VARSTRING.GET_LINE (AG_OQUTFILE,Nyw_Woid);
end loop; .
DXGRAPH.ADD (Cuz_Opt, THE_GRAPH);
INXTIALIZE_OPERATOR (Cuc OPt);
aend 1£;
end i€;
end loop:
end SEPARATE_DATA;

proceduxe VALIDATE_DATA (THE_GRAPH : in out DIGRAPH.GRAPH) is

TARGET : DIGRAPK.V_LISTS.LIST;

package VAL_XO i3 new TEXT_XO.INTEGES®_XO(VALUEZ);
begin

TARGET :» THE_GRAFH.VERTICES;

while DIGRAPH.V_LXSTS.NON_EMETY (TARGET) loop

~=- ensure that there is no opeaxator without an MET,

Lf DIGRAPH.V_LISTS.VALUL (TARGET) +THE_MET = 0 then
Exception_Operatox := DIGRAPH.V_LISTS.VALUE (TARGET) .THE _OPERATOR_ID;
raise CRIT_OP_LACKS MET;

end if£;

== Check to ensure that MCP has a value for sporadic operxatorxs

£ 4 DIGRAPH.V_LISTS.VALUL (TARGET) .THE MCP = O then
Exception Operatox :m DIGRAPH.V LISTS.VALUE (TARGET) .THE_OPERATOR ID;
ralse SPORADIC_OP_LACKS MCE;

clalif DIGRAPH.V_LISTS.VALUE (TARGET) «THE_MET >

DIGRARH.V_LISTS.VALUE (TARGET) .THE_MCP then

Exception_Operator := DIGRAPH.V_LISTS.VALUE (TARGET) +THE_OPERATOR ID;
raise MCP_LESS_THAN MET;

end if;

i DXGRAPH.V_LISTS.VALUE (TARGET} .THE PERIOD = 0 then ‘

=~= Check to ensure that MRT has a value for sporadic operators

1f DIGRAPH.V_LISTS.VALUE (TARGET) +THE MRT = § then
Exception_Operator := DIGRAPH.V_LISTS.VALUE (TARGET) .THE_OPERATOR_ID;
raise SPORADIC_OP_LACKS_MRT;

end if;

-~ Check to ensure that the MRT is greater than the MET,
if DIGRAPH.V_LISTS.VALUE (TARGET) .THE_MET >
DIGRAPH.V_LISTS.VALUE (TARGET) +THE_MRT then
Exception_Operxator :w= DIGRAPH.V_LISTS.VALUE (TARGET) .THE_OPERATOR_ID;
raise MET_NOT_LESS_THAN_MRT;
end if;

== Guarantees that an operator can fire at least once

s ®

. -~ hefore a zesponse expected.
1L DIGRAPH.V_LISTS.VALU!(TARG:T).TNt_yCP >
DXGRAPK .V _LXS2,.,VALUE (TARGET) . THE_MRT then

ralse MCP_NOT_LESS_THAN MRY;
end if;

elae
-= Check to e¢nsure that the PERIOD is greatar than the MET,

£ DIGRAPH.V_LISTS.VALUEL (TARGET) . THE_MET >
DXGMAPH.V_LISTS.VALUE (TARGET) .THE_RERIOD then

Exception_Operator := DXGRAPH.V_LISTS.VALUE (TARGET) .THE_OPERATOR_ID;
raise MET NOT_LESS_TMAN_PERIOD;
end if;

-= Check to ensure that the FINISH WMITHIN is greater than the MET.
Lf DIGRAPH.V_LXSTS,VALUE (TARGET) .THE_NITHIM /= 0 then
i€ DIGRAPH.V_LISTS.VALUE (TARGET) . THE_MET >
DIGRAPH.V_LISTS.VALUK (TARGET) .THE_WITRIN then
Ixception Operator := DIGRAPR.V_LISTYS.VALUK (TARGET) .THE_OPERATOR_ID;
ralse HET_XS_GREATER_TMAN_FINXSH_WITMIN;
elaif DIGRAPH.V_LISTS.VALUE (TARGET) .THE_PERIOD <
DIGRAPH.V_LISTS.VALUE (TARGET) . THE_WITHIN then
Exception Operator := DIGRAPH.V_LISTS.VALUE (. AAGET) . THE_ORPERATOR_ID;
rxise PERIOD_LESS_THAN_FINISH WITHIN;
end if;

end if;
‘ end if;

DIGRAPH.V_LISTS.NEXT (TARGLT) ;

end loop;
end VALIDATE_DATA;

end FILE PRQCESSOR;

@ 0

. 0 G T P T VD 0 i S P a0 S G S T G I Y (g A S S R BN G B U G O ey M T SN R I W TU S G S AN A0 A S &R B 0R

APPENDIX V STATIC SCHEDULER GRAPH STRUCTURE

£ile: grapha_s.s
auvthoxy murat kiliec
issac mostov
tony davis
date: aup 89

modified: onct 89 by murat kilic

——————— - 24 o -

with SEQUENCES:
with VSTRIUGS;

Qe

el]

neric
typs VELTEX la private;

ckage GRAPHS is

package V_LISTS is néw
use V_LISTS;

SEQUENCES (VERTEX) ;

package V_STRING is new VSTRINGS (80);

use V_STRING;

subtype DATA_STREAM is
subtype MET is NATURAL;

type LINK DATA is
recoxd
THB_pATA_ﬁTREAM
THE_FIRST OP_ID
THE_LINK MET
THE_SECOND_OP_ID
end record;

package E_LISTS is new
use E_LISTS;

type GRAPH is
record
VERTICES

end record;

: V_LISTS.
LINKS : E_LISTS.

VSTRING;

DATA_STREAM:
V_LISTS.LIST;
MET := 0;

V_LISTS.LIST;

SEQUENCES (LINK_DATA);

LIST;
LIST;

304

PR S NP R |

function EQUAL GRAPHS (Gl : in GRAPH; G2 : in GRAPH) rxeturn BOOLEAN;

pracedure

function IS_NODE(X : in VERTEX; G

function IS_LINK(X : in VERTEX; Y

procedure
procedure
procedure
procedure
procedure

procedure

procedure

procedure
procedure

end GRAPHS;

EMPTY (G : out GRAPH);

ADD(X : in VERYEX; G

ADD(L : in LINK DATA; G

REMOVE (X : in VERTEX: G

GRAPH) return BOOLEAN;

in VERTEX;
in GRAPH) xeturn BOOLEAN;

in out GRAPH);
in out GRAPM);

in out GRAPN):

REMOVE (X : in VERTEX; Y : in VERTEX; G : in out GRAPNM);

SCAN_NODES(G : in GKARH; S : in

SCAN_PARENTS (X : in VERTEX; G :
S :

SCAN_CHILDREN(X : in VERTEX; G
S

DUPLICATE(Gl : in GRAPH; G2 : in

out V_LISTS.LIST);

in GRAPN;
in out V_LISTS.LIST);

in GRAPNM;
in out V_LISTS.LIST);

out. GRAPH);

T_SORT(G : in GRAPH; S : in out V_LISTS.LIST);

Jos

alt

APPENDIX W STATIC SCHEDULER GRAPH STRUCTURE

T S G G Y e e A T) S P Y Oy Gy B e e B -

-- file: grapha_b.a
-~ author: murat kilic
- lasaac moatov
- tony davia
-= Jdate: sep 89

-- modified: oct 89 by murat kilic

with UNCHECKED DEALLOCATION;

package body GRAPHS ia
procedure FREE i3 new UNCHECKED_DEALLOCATION (E_LISTS.NODE, E_LISTS.LIST);
function EQUAL_GRAPHS (Gl : in GRAPH; G2 : in GRAPH) return BOOLEAN is

function SUB_SET(Gl : in GRAPH; G2 : in GRAPH) return BOOLEAN ia
Ll ¢ V_LISTS.LIST := GL.VERTICES;
L2 E_LISTS.LIST := Gl.LINKS;
begin
if not SUBSEQUENCE(Ll, G2.VERTICES) then
return FALSE;
end if;
while NON_EMPTY{L2) loop
if not IS_LINK(VALUE(VALUE(LZ).THE_?IRSILPP_}D),
VALUE(VALUE(LZ).THE_SECOND_QP_}D), G2) then
return FALSE;
end i£;
NEXT(L2);
end loop;
return TRUE;
end 5SUB_SET;
begin
-= equal_graphs
return (SUB_SET(Gl, G2) and SUB_SET (G2, Gl));
end EQUAL GRAPHS;

procedure EMPTY (G : out GRAPH) is
begin

EMPTY (G.VERTICES) ;

EMPTY (G.LINKS) ;
end EMPTY;

306

function IS_NCDE(X :
begin
if LOOX4(X, G.VERTICES) /= null then
xeturn TRUE;
else
return FALSE;
end if£;
end IS_NODN;

in VERTEX; G : GRAPH) relurn BOOLEAN is

function XS_LINK(X : in VERTEX; Y :
L : E_LISTS.LIST := G,LINKS;
begin
while L /= null loop
if VALUE(VALUE(L).THE_!IRST_QP_}D) = X and
VALUB(VALUB(L).TNE_;ECOND_QP_}D) w Y then
return TRUE;
end if;
L := L, NEXT;
end loop;
return FALSE;
end IS_LINK;

in VERTEX: G :

procedure ADD(X : in VERTEX; G :
begin
ADD (X, G.VERTICES):;

end ADD;

in out GRAPH) is

proceduxes ADD (L :
begin
if LOOKA (L.THE_FXRST_OP_ID.ELEMENT, G,VERTICES) /= null and
LOOK4 (L.THE_SECOND_OP_ID.ELEMENT, G.VERTICES) /= null then

in LINK _DATA; G : in out GRAPH) is

ADD (L, G.LINKS);

end if;
end ADD;

procedure REMOVE (X :
S : V_LISTS.LIST:
L : V_LISTS.LIST;
PRZV : V_LISTS.LIST := null;
begin
SCAN_CHILDREN (X, G, 8);
while NON_EMPTY(S) loop
REMOVE (X, VALUE(S), G);
NEXT(S)
end loop;
SCAN_PARENTS (X, G, §);
while NON_EMPTY(S) loop
REMOVE (VALUE(S), X, G);

in VERTEX; G : in out GRAPH) is

in GRAPH) return BOOLEAN is

C e e

NEXT(S);
end loop;
REMOVE (X, G.VERTICES);
end REMOVE;

proceduxe REMOVE(X : in VERTEX; ¥ : in VERTEX; G : in out GRAPHK) is
L ¢ E LISTS.LIST := G.LINKS;

PREV : E_LISTS.LIST i= null;
TEMP E_LISTS.LIST = null;
begin
while NON_EMPTY (L) loop
if VALUZ (VALUE (%) .THE_FIRST_OP_ID) = X and
VALUE (VALUE (L) . THE_SECOND_OP_ID) = X then
TEMP :m= L;
NEXT (L) ;
FREE {TEMP) ;
if PREV /= null then
PREV.NEXT :w L;
elaa
G.LINKS := L;
end if;
else
PREV :m= L;
NEXT (L) ;
end if;
end loop;
end REMOVE;

procedure SCAN NODES(G : in GRAPH; S : in out V_LISTS.LIST) is .
L : V_LISTS.LIST := G.VERTICES;

|
begin
~1eTY (S) ;
while NON_EMPTY (L)} loop
ADD (VALUE{L}, S);
NEXT (L) ;
end loop;
end SCAN_NODES;

procedure SCAN PARENTS(X : in VERTEX; G

4

in GRAPH;

8 : in out V_LISTS.LIST) is
L : E LISTS.LIST := G.LINKS;

begin
EMPTY (S) ;
while NON_EMPTI (L) loop
if VALUE(VALUE(L).THE_SECOND_pP_;D) w X then
ADD(VALUE(VALUE(L).THB_FIRST;QP_ID), 8);
end if;
NEXT (L) ;
end loop;
end SCAN_PARENTS;

°

proceduxe SCAN_CHILDREN(X : in VERTEX; G : in GRARN;
8§ : in out V_LISTS.LIST) is
L : E_LISTS.LIST := G,LINKS;
begin
IMPTY (S);
while NON_EMPTYX (L) loop
1f VALUE (VALUEZ (L) .THE_FIRST_OP_ID) = X then
ADD(VALUE(VALUE(L).TH!_ﬁlCOND_O!_}D), 8);
end if;
NEXT (L) ;
end loop;
end SCAN_CHILDREN;

procedure DUPLICATE (Gl : in GRAPH; G2 : in out GRARH) is
begin

DUPLICATE (G1.VERTICES, G2.VERTICES);

DUBLICATE (G1l.LINKS, G2,LINXS):
end DUPLICATE;

procedure T_SORT(G : in GRAPH; S : in out V_LISTS.LIST) is
Gl : GRAPH;
T, L, P : V_LISTS.LIST;
begin
EMPTY (T);
DUPLICATZ (G, Gl):
SCAN_NODES (G1, L);
while NON_EMPTIY (L) loop
SCAN_PARENTS (VALUE (L), G1, B);
if not NON_EMPTY(P) then
ADD (VALUE (L), T);
REMOVE (VALUE (L), Gl1);
SCAN_NODES (G1, L);
else
NEXT (L) ;
end if;
end loop;
SCAN_NODES (G1, L);
if NON_FMPT!(L) then
EMPTY (S) ;
else
LIST_BEVERSE(T, S):
end if;
end T_SORT;
end GRAPHS;

APPENDIX X STATIC SCHEDULER HARMONIC BLOCK BUILDER

-~ file: hbb_s.a
-~ authox: muzat kililc
-~ date: sep 89

-=- modified: oct 89 by murat kilic

with FILES; use FILES;
package HARMONIC BLOCK BUILDER is

procedure CALC_PERIODIC_EQUIVALENTS
(OPT_LXST : in out DIGRAPH.V_LISTS.LIST);

procedure FIND BASE_BLOCK
(PRECEDENCE_LIST : in DIGRAPK.V_LISTS.LIST;
BASE_BLOCK { out VALUE);

procedure FIND_BLOCK_LENGTH
(PRECEDENCE_LIST : in DIGRAPH.V_LISTS.LIST;
HARMONIC_BLOCK_LENGTH : out INTEGER };
HO_BASE_BLOCK ! exception;
NO_OPERATOR_IN_LIST : exception;
MET_NOT_LESS_THAN_PERIOD : exception;

end HARMONIC BLOCK BUILDER;

310

APPENDIX Y STATIC SCHEDULER HARMONIC BLOCK BUILDER

- o vy - -

-~ file: hbb_b.a
-- author: murat kilic
~= date: sep 89

-~ modified: oct 89

- n o o 0y s 8 T O g s 2 B

with TEXT_I0;
with FILES; use FILES;
package body MARMONIC BLOCK BUILDER is

procedure CALC_PERIODIC_EQUIVALENTS
(OPT_LIST : in out DIGRAPH.V LISTS.LIST) ia

V : DIGRAPH.V_LISTS.LIST := OPT_LIST;

‘ procedure VERIFY 1 (O : in OPERATOR) is

-= Check to ensure that MRT has a value for sporadic oparators
bzgin
if O.THE_MET >= O,THE_PERIOD then
Exception_Operutor := O.THE_OPERATOR ID;
raise MET_NOT_LESS_THAN_ PERIOD;
end 1if;
end VERIFY_1;

procedure CALCULATE_NEW _PERIOD (O : in out OPERATOR) is
DIFFERENCE : VALUE;
package VALUE_XO is new TEXT XC.INTEGER_IO(VALUE):;
begin
DIFFERENCE :~ O.THE_MRT - O.THE_MET;
if DIFFERENCE < O.THE _MCP then
O.THE_PERIOD := DIFFERENCE;
else
O.THE_PERIOD := O.THE_MCP;
end if;
TEXT_IO.put ("The new PERIOD is => ¥);
VALUE_IO.put (O.THE_PERIOD) ;
TEXT IO.NEW_LINE;
end CALCULATE_NEW_FZRIOD;

®

begin =~ main CALC_PERIODIC_EQUIVALENTS
while DIGRAPH.V_LISTS.NOH_EMPTX (V} loop
i£ DIGRAPH.V_LISTS.VRLUS(V).THE_?ER!OD = 0 then
CALCULATE_NEW_PERIOD(V.ELtﬂLNT):
end i€,
VBRIPY_}(DIGRAPH.V_LISTS.VALUE(V}):
DIGRAPH.V_pISTS.NEXT(V):
end loop;
end CALC_PERIODIC_EQUIVALENTS;

procedure FIND_BASE_BLOCK (PRECEDENCE_LIST : in DIGRAPN.V_LXSTS.LIST;
BASE_BLOCK : out VALUE) i»s

P_LIST : DIGRAPH.V_LISETS.LIST i~ PRECEDENCE_LIST;

DIVISOR : VALUE;

ALTERNATE_SEQUENCE : DIGKARH.V_LISTS,LISY;

BASE_BLOCK _SEQUENCE : DIGRAPH.V_LISTS.LIST;
package VALUE_XO ia new TEXT_XO.INTEGER_XO(VALUE);

function FIND_MINIMUM_PERIOD (P_LIST : in DIGRARPH.V_LISTS.LIST)
return VALUE is
Vv DIGRAPH.V~LISTS.LIST t» P_LIST;
HIN_PERIOD ! VALUE :=~ 0;

begin
if DIGRAPHK.V_LISTS.NON_EMETIY (V) then
MIN_PERIOD := DXGRAPH.V_LISTS.VALUE (V) .THE_PERIOD;
DIGRAPH.V_LISTS.NEXT(V); ‘
while DXGRAPH.V_LISTS.NON_EMPTY (V) loop
if DIGRAPH.V_LISTS.VALUE{V) .THE_PERIOD < MIN PERIOD then
MIN_PERIOD :» DIGRAPH.V_LISTS.VALUE (V) .THE_PERIOD;
end 1£;
DIGRAPH.V_LISTS.NEXT(V};
end loeop;
return MIN PERIOD;
elae
raise NO_OPERATOR_IN_LIST;
end i£;
end FIND MINIMUM PERIOD;

function MODE_DIVIDE (THE_PERIOD : in VALUE) return VALUL is
begin

return (THE_PERIOD mod DIVISOR);
end MODE DIVIDE;

procedure INITIAL_PASS (P_LIST : in out DIGRAPH.V_LISTS.LIST;
BASE_BLOCK SEQUENCE : in out DIGRAPH.V LISTS.LIST;
ALTERNATEZ_SEQUENCE : in out DIGRAPH.V_LISTS.LIST) i»

ORIG_SEQUENCE : DIGRAPH.V_LISTS,LIST :=~ P_LIST;

OP_FROM_ORG_SEQ : OPERATOR;
312 .

REMAINDER ; VALUE;
THE_PERIOD : VALUE;
begin
while DIGRAPH.V_LISTS.NON_EMPTY (ORXG_SEQUENCE) loop
THE_PERIOD := DIGIA?N.V_LISTS.VALU!(Ol!Q_ﬁlQUtﬂCl).Tﬂl_ltRIOO;
REMAINDER := MODE_DIVIDE (TN!_?IRIOO):
OP_FROM_ORG_SEQ :™ DIGRAPN.V_LISTS.VALUE (ORIG_SEQUENCE);
3£ REMAINDER = (0 than
DXGRAPH.V_LISTS.ADD (OF_YROM ORG_SEQ, BASE_BLOCK_SEQUENCEK);
alae
DIGRAPH.V_LISTS.ADD (OF_YROM_ORG_SEQ, ALTERMATE_SKQUENCE);
end 1¢;
nxcnarn.v_nxsrs.nzxr(onxe_;zqu:uc:);
end loop;
end INITIAL_PASS;

begin -~ main FIND_BASE_BLOCK
DIVISOR :w rIND_ﬂIHIHUﬂ_PBRIOD(P_L!ST);
INITIAL_?ASS(P_LIST, BASE_BLOCK_SEQUENCE, ALTERMATE SEQUENCE);
while DXGRAPH.V_LISTS.NON_EMPTY (ALTERNATE_SEQUENCE) loop
if DIVISOR =~ 1 then
raise NO_BASE_BLOCK;
-- exit and terminate the Static Scheduler
else
DIVISOR := DIVISOR - 1;
ALTERNATE_SEQUENCE := null;
BASE BLOCK SEQUENCE := null;
INITIAL_PASS(P_&!ST, BASE_BLOCK _SEQUENCE, ALTERNATE_SEQUENCE);
end if;
end loop;
BAS!_PLOCK t= DIVISOR;
end FIND BASE_BLOCK;

procedure FIND BLOCK LENGTH
(PRECEDENCE_LIST ¢ in DIGRAPK.V_LISTS.LIST;
HARMONIC_BLOCK LENGTH : out INTEGER) is

ORIG_SEQUENCE : DIGRAPH.V_LISTS.LIST := PRECEDENCE_LIST;

NUMBER1 : VALUE;
NUMBER2 : VALUE;
LCM : VALUE;
GCD ¢ VALUE;
TARGET_NO : VALUE;

function FIND GCD
(NUMBERY1 : in VALUE; NUMBER2 : in VALUE)
return VALUE is NEW_GCD : VALUE;
begin
while GCD /= 0 loop
if (NUMBERI mod GCD = 0) and (NUMBER2 mod GCD = Q) then
NEW_GCD := GCD;

k) K}

return HEN_GCO{
elae
GCD = GCD = 1;
endd L4;
end loop;
end FIND_GCOD;

function FXIND_LCH (NUMBERL, NUMRER2 : VALUE) xeturn VALUE is
begin

geturn (NUMBERL * NUMBER2) / GCD;
end FXND_LCM;

begin -~ main FIND_BLOCK_LENGTH
i€ DIGRAPH.V_LISTS.NON_EMPTY (ORYG_SEQUENCE) then
NUMBERY tm nxcnanu.v_xxsrs.vuxuz(onxc_§tquzucz).rn:_p:nxoo;
DIGRAPH.V_pISTS.NEXT(OlIG_ﬁ!QUtNCE):
while DXGRAPH.V_LISTS.NON_EMPTY (ORIG_SEQUENCE) loop
NUMBER2 :~ DIGRAPH.V_LXSTS.VALUE (ORXG_SEQUENCE) .TY.Z_PERIOD;
S RUMBER2 > NUMBERY then
GCD :=~ NUMBER];
TARGET_NO :~ NUMBER2;
clse
GCD := NUMBER2;
TARGET_NO :m NUMBER1;
end Lf;
GCD := FIND_GCD(GCD, TARGET NO);
LCM = FIND_ LCM{NUMBERl, NUMBER2);
NUMBERL := LCM;
DIGMPH.V_LISTS.NBXT (ORIG_SEQU!NCS) H
end loop;
HARMONIC BLOCK _LENGTH := LCM;
else
raise NO_OPERATOR_IN LIST;
end 1¢;
end FIND_BLOCK LENGTH;

end HARMONIC_BLOCK BUILDER;

314

EP R

(YRS

B R VR

APPENDIX Z STATIC SCHEDULER ALGORITHMS

s o e o o e - on am 0n e = T wn B S TR e 4 68 SE 08

-- file: acheaduler_a.a
-~ author: murat kilic
-~ date: dec 89

-~ modified: dec 89 by laura j. white

with FILES; use FILES;
package OPERATOR_SCHEDULER is

procedure TEST_DATA
(INPUT_LIST
HARMONIC_BLOCK_LENGTH

procedure SCHEDULE_INITIAL SET

in
in

DIGRAPH.V_LISTS.LIST;
XNTEGER) ;

{PRECEDENCE_LIST

THE_SCHEDULE_INPUTS
HARMONIC_BLOCK_LENGTH

STOR_TIME

in DIGRAPM.V_LISTS.LIST;

in out SCHEDULE_INPUTYS LIST.LIST;
in INTEGER;

in out INTEGER);

a0 o0 e o

procedure SCHEDULE_REST OF_ BLOCK

(PRECEDENCE_LIST

THE_SCHEDULE_INPUTS
HARMONIC_BLOCK_LENGTH

STOP_TIME

in DIGRAPN.V_LISTS.LIST;

in out SCHIDULI_INIUTS_?.JH.LIHI
in INTEGER;

in INTEGER);

procedure SCHEDULE_WITH_EARLIEST START

(THE_GRARH
AGENDA

HARMONIC_BLOCK_LENGTH

¢+ in DIGRAPM.GRAPH;
: in out SCHIDULI_IN!UTS__LIST.LIS‘N
: in INTEGER):;

procedure SCHEDULE_NITH EARLIEST DEADLINE

(THE_GRAPH
AGENDA

HARMONIC_BLOCK_LENGTH

in DIGRAPH.GRAZN;
in out SCHEDULE_INPUTS LIST.LIST;
in INTEGER):

procedure CREATE_STATIC_SCHEDULE

(THE_GRARH

THE_SCHEDULE_INPUTS
HARMONIC_BLOCK_LENGTH

MISSED DEADLINE : exception;
OVER_TIME s exception;

in DIGRAPH.GRAPH;
in SCHEDULE_INPUT3_LIST.LIST;
in INTEGER);

s e s

315

VISSED_OPERATOR : exception;

end OPERATOR_SUHEDULER;

316

APPENDIX AA STATIC SCHEDULER ALGORITHMS

A B 58 B e T O e e O T B S S 3 D T G P 0 B e - - - - -

- file: scheduler_b.a
-» author: muzat kilic
-= datae: nov 89

-= modified: dec 89 by laura j. white

with FILES; use FILES;
with TEXT_XO;
package body OPERATOR SCHEDULER is

procedure TEST _DATA (INPUT_LIST

procedure CALC TOTAL TIME (INRUY_LIXST

: in DIGRAPN.V_LISTS.LIST;
HARMONIC BLOCK_LENGTH : in INTRGER) ls

: in DIGRAPN.V_LISTS.LISY;
HARMONIC_BLOCK LENGTH : in INTEGER) is
V : DIGRAPH.V_LISTS.LIST := INPUT_LIST;

TIMES : FLOAT := 0.0;
OP_TIME : FLOAT := 0.0;
TOTAL_TIME : FLOAT := 0.0;
PER ¢ OPERATOR;

BAD_TOTAL TIME : exception;

function CALC_NO_OF PERIODS (HARMONIC_BLOCK LEMGTH : in INTEGER;
THE_PERIOD : in INTEGER) xeturn FLOAT is
begin
return FLOAT (HARMONIC_BLOCK LENGTH) / FLOAT (THE_PERIOOD) ;
and CALC_NO_OF_PERIODS;

function MULTIPLZ BY MET (TIMES : in FLOAT;
THE_MET : in VALUE) xeturn FLOAT is
begin
return TIMES * FLOAT (THE_MET);
end MULTIPLY_BY_ MET;

function ADD_TO_SUM (OP_TIME : in FLOAT) return FLOAT is
begin

return TOTAL TIME + OP_TIME;
end ADD_TO_SUM;

begin --main CALC_TOTAL_TIME

while DIGRAPH.V_LISTS.NON_EMPTY (V) loop
PER := DIGRAPH.V_LISTS.VALUE (V)

317

dadud

OP_TIME :m MULTIPLY_BX MET (TIMES, DIGRAPN.V_LISTS.VALUE (V) .THE_MET);
TOTAL_TIME ie ADD_TO_SUM (OP_TIME);
i€ TOTAL_TIME > FLOAT (HARMONIC RLOCK_LENGTH) then
ruise BAD_TOTAL_TIME;
elae
DIGRAPK.V_IISTS.NEXT(V);
end if;
end loop;
axception
whan BAD_TOTAL_TIME w>
TEST_VEAIFIED i PFALSE;
TEXT_XO.PUT("The total execution time of the operators exceeds");
TEXT_XO.PUT_LINE(™ the HARMONIC_BLOCK LENGTH®);
TEXT_XO.NEW_LINE;
end CALC_TOTAL_TIME;

TIMES:» CALC_KO_OF_PERIODS (HARMONIC BLOCK LENGTM , PER.THE PERIOD); ‘

procedura CALC_HALY_PERIODS (XNPUT_LIST : in DIGRAPM.V_LISTS.LIST) is

V : DIGRAPH,V_LISTS.LIST := INPUT_LIST;
HALF_PERIOD : FLOAT;
FAIL _MALF_PERIOD : exception;

function DIVIDE PERIOD_BY 2 (THE_PERIOD : in VALUE) xeturn FLOAT is
hegin
return FLOAT (THE_PERIOD) / 2.0;
end DIVIDE_PERIOD_BY_2; .
begin --main CALC_MALF_PERIODS;
while DIGRAPH.V_LISTS.NON_EMPTY (V) loop
HALF_PERIOD := DIVIDE_?!RIOD_}!_?(DIGRAPK.V;&ISTS.VALUE(V).THIL}IRIOD):
if FLOAT(DIGRAPH.V_LISTS.VALUE (V) .THE MET) > HALY_PERIOD then
Exccption_ppczlto: t= DIGRAPH.V_LISTS.VALUE (V) .THE_OPERATOR ID;
ralse FAIL HALF_ PERIOD;
else
DIGRAPH.V_pISTS.NEXT(V);
end if;
end loop;
exception
when FAIL HALF_PERIOD =>
TEST_VERIFIED := FALSE;
TEXT_IO.PUT ("The MET of Operator ");
VARSTRING.PUT (Ezception Operator);
TEXT_XO.PUT_LINE (" is greater than half of its periocd.");
end CALC_HALF_PERIODS;

procedure CALC_RATIO_SUM (INPUY_LIST : in DIGRAPH.V_LISTS.LIST) is
V : DIGRAPH.V_LISTS.LIST := INPUT_LIST;
RATIO : FLOAT;
RATIO_SUM : FLOAT := 0.0;
THE_MET : VALUE;

°

THE_PERIOD : VALUE;
RATIO_TQO_BIG : exception;

function DIVIDE MET_BY PERIOD (THE MET : in VALUKR;
THE_PERIOD : in VALUE) xeturn FLOAT is
bagin
xretuxn FLOAT (THX MET) / FLOAT (THE_PERIOD) ;
end DIVIDE_MET_BY_PERIOD;

function ADD_TO_TIME (RATIO : in FLOAT) xeturn FLOAT is
begin

return RATIO_SUM + RATIO;
and ADD_TO_TIME;

begin --main CALC_RATIO_SUM
while DIGRAPH.V_LYSTS.NON_EMPTY (V) loop
THE MET := DIGRARK.V_LISTS,VALUE(V).THL MEY;
THE_PERIOD := DIGRAPH.V_LXSTS.VALUF (V) +THE_PERIOD;
RATIO := DIVIDE MET_BY_PERIOD (THE_MET,THE_PERIOD) ;
RATIO_SUM := ADD_TO_TIME (RATIO);
DIGRAPH.V_LISTS.NEXT(V);
end loop;
if RATIO_SUM > 0.5 then
raise RATIO_TOO_BIG;
end if;
exception
when RATIO_TOO_BIG =>
TEST_VERIFIED := FALSE;
TEXT_XO.PUT ("The total MET/PERIOD ratio sum of operators is");
TEXT_IO.PUT_LINE (™ greater than 0.5%);
end CALC_RATIO_SUM;

begin --masin TEST_DATA
CALC_TOTAL_TIME (INPUT_LIST, HARMONIC_BLOCK LENGTH);
CALC_MALF_PERIODS (INPUT_LIST);
CALC_RATIO_SUM (INPUT_LIST) ;
end TEST_DATA;
procedure VERIFY_TIME LEFT (HARMOHIC_BLOCK_LENGTH : in INTEGER;
STOP_TIME : in INTEGER) is

begin
if STOP_TIME > HAMNIC_BLOCK_LENGTH then
raise OVER_TIME;
~-gxit and terminate the Static Scheduler
end if;
end VERIFY_TIME_LEFT;

procedure CREATE INTERVAL (THE_OPERATOR : in OPERATOR;
INPUT : in out SCHBDUL!_INPUTS:
OLD_LONER : in VALUE) is

LOWER_BOUND : VALUE;

319

function CALC_LOWER BOUND return VALUE ls .
begin
== asince CREATE_INTERVAL function is used in hoth SCHEDULE_INXTIAL_SET
and SCHEDULE_REST_QF BLOCK (OLD_LOWER /= 0) chack is needed. In
case of the operator ls acheduled gomewhere in its intexval and
(OLD_LOWER /= 0),
this check guarantees that the perlods will be consistent.
if (OLD_LOWER /= 0) and (OLD_LOWER < INPUT.THE_START) then
LOWER_BOUND ;= OLD_LOWER + THE_OPLRATOR.THE_PERIOD;
else
LOWER_BOUND := IHPUT.THE_START + THE_OPERATOR.THE PERIOD;
end i£;
rsturn LOWER_BOUND;
end CALC_LOWER BOUND;

function CALC_UPPER_BOUND return VALUE is
begin
if THE_OPERATOR.THE_WITHIN = 0 then
return LOWER_BOUND + THE_OPERATOR.THE_PERIOD ~ THE_OPERATOR.THE_MET;
-- if the operator has a WITHIN conatrxaint, the upper bound of the
== intezval is reduced.
else
return LOWER_BOUND + THE_OPERATOR.THE_WITHIN - THE_OPERATOR.THE_MLT;
end if;
end CALC_UPPER_BOUND;
begin --main CREATE_INTERVAL
INPUT.THE_LOWER := CALC_LOWER BOUND; ‘
INPUT.THE_UPPER := CALC_UPPER_BOUND;
end CREATE_INTERVAL;

- . s W Sy s S B S Vg D G L M HS S BN e AL D TR TS G B S G W e P ek G b ey b S PR S S e el e

procedure SCHEDULE INITIAL_SET
(PRECEDENCE_LIST ¢ in DIGRAPH.V_LISTS.LIST;
THE_SCHEDULE_INPUTS : in out SCHEDULE_INPUTS_LIST.LIST;
HARMONIC BLOCK LENGIH : in INTEGER;
STOP_TIME ¢ in out INTEGER) is

V : DIGRAPH.V_LISTS.LIST :~ PRECEDENCE_LIST;
START_TIME : INTEGER := 0;

NEW_INPUT : SCHEDULE_IN2UTS;

OLD_LOWER : VALUE :=0;

begin ~-SCHEDULE_INITIAL_SET
while DIGRAPH.V_LISTS.NON EMPTY (V) loocp

Excertion_Operator := DIGRAPH.V_LISTS.VALUE (V) ,THE_OPERATOR_ID;
NEW_INPUT.THE_OPERATOR := DIGRAPH.V_LISTS.VALUE (V) .THE OPERATOR_ID;
NEW_INPUT.THE_START := START TIME;
STOP_TIME :m~ START_TIME + DIGRAPH.V_LISTS.VALUE(V).THE MET;
VERIFY TIME_LEFT (HARMONIC_BLOCK_LENGTH, STOP_TIME);
NEW_INPUT.THE_STOP := STOP_TIME;

START_TINB B STOP_?IME;
320 ‘

-~ fox every operator in SCHEDULE_INITIAL_SET, OLD_LOWER is zexo.
== S0 we always send zero value to CREATE_INTERVAL,
CREATE_INTERVAL (DIGRARPH.V_LISTS.VALUE(V), NEW_INPUT, OLD_LOWER);
SCHEDULE_XINPUTS_LIST.ADD (NEW_INPUT, THE _SCHEDULE INPUTS);
DIGRAPH.V_LISTS.NEXT(V);
end loop;
end SCHEDULE_INITIAL SET;
procedure SCHEDULE_REST_OF_BLOCK
(PRECEDENCE_LIST:in DIGRAPH.V_LISTS.LIST;
THE_SCHEDULE_INPUTS ¢ in out SCHEDULE INPUTS_ LIST.LIST;
HARMONIC_BLOCK_LENGTH : in INTEGER;
STOP_TIME : in INTEGER) ia

V : DIGRAPH.V_LISTS.LIST := PRECEDENCE_LIST;

TEMP : SCHEDULE_INPUTS_LIST.LIST := THE_SCHEDULE_INPUTS;
V_LIST : DIGRABH.V_LISTS.LIST;

P : SCHEDULE_INPUTS_LIST.LIST;

S : SCHEDULE_INPUTS_LIST.LIST;

START_TIME : INTEGER := 0;

TIME_STOP : INTEGER := STOP_TIME;

NEW_INPUT : SCHEDULE_INBUTS;

OLD_LOWER : VALUE;

begin
DIGRAPH.V_LISTS.DUPLICATE (PRECEDERCE_LIST, V_LIST);

SCHEDULE_INPUTS_LIST.LIST_ REVERSE (THE_SCHEDULE_INPUTS, P);

loop
while SCHEDULE_INPUTS_LIST.NON EMPTY (P) loop
if SCHEDULE_INPUTS_LIST.VALUE (P) .THE_LOWER < HARMONIC BLOCK LENGTH then
NEN_INPUT.THE_OPERATOR :» DIGRAPH.V_LISTS.VALUE (V) +THE_OPERATOR_1ID;
== chack if the operator can be scheduled in its interval
if SCHEDULE_INPUTS_LIST.VALUZ (®) +«THE_UPPER ~ TIME STOP
>= DIGRAPH.V_LISTS.VALUE (V) .THE_MET then
if SCHEDULE_INPUTS_LIST.VALUE (P) .THE_LOWER >= TIME STOP then
START_TIME := SCHEDULE_INPUTS_ LIST.VALUE (P) .T.JI_LON!R;
elase
START_TIME := TIME_STOP;
end if;
NEW_INPUT.THE_START := START_TIME;
NEW_INPUT.THE STOP := START_TIME + DIGRAPH.V_LI3TS.VALUE (V) .THE MRT;

TIME_STOP := NEW_INPUT.THE_STOE;

OLD_LOMWER := SCHEDULE_INPUTS_LIST.VALUE (P) .THE LOMER;
CREATE_INTERVAL (DIGRAPH.V_LISTS.VALUE(V), NEW_INPUT, OLD__LWIR) H
SCHEDULE_INPUYS_LIST.ADD (NEH_INPUT, TEMP) ;
SCHEDULE_INPUTS_LIST.ADD (NEW_INEPUT, S):

Exception_Operator := DIGRAPH.V_LISTS.VALUE (V) .THE OPERATOR_ID;
VERIFY_TIME_LEFT (HARMONIC_BLOCK_LENGTH, TIME_STOP);

321

DXIGRAPH.V_LISTS.HEXT(V);
SCHEDULB_INPUTS_pIST.NEXT(P);
-~ L€ the operator can not be acheduled in its interval raise the
-= gxception
else
Bxception_Opernto: i= DIGRAPH.V_LXSTS.VALUE (V) .THE_OPERATOR_XD;
ralse MISSED_DEADLINE;
. end if;
else
DIGRAPH.V_LISTS.REMOVE (DIGRAPH,V_LISTS.VALUE(V), V_LIST);
DXGRAPH.V_LXSTS.NEXT (V) ;
SCHEDULEL}HEUTS_LIST.NBXT(P);
end i£;
end loop;
if SCHEDULE_INPUTS_LIST.NON_EMPTY(S) then
SCHEDULE_INPUTS_LIST.LIST REVERSE(S, P):
SCHEDULE_}NPUTS_pIST.EMPTY(S);
V = V_LIST;
¢lse
exit;
end if;
end loop;
SCHEDULE_INPUTS_LIST.LIST_REVERSE (TEMP, THE_SCHEDULE_INPRUTS);

end SCHEDULE_REST OF_BLOCK;

- et up P s - - - - e o .

procedure BUXLD OP_INrQ LIST

(THE_GRAPH : in DIGRAPH.GRAPH; ‘
THE_OP_INFO_LIST : in out OP_INFO_LXST.LIST) is

-- this procedure finds =ach operator‘s successors and predeceasors

-~ first and creates the OPERATOR_INFO_LIST.

V : DIGRAPH.V_LISTS.LIST := THE_GRAPH.VERTICES;

S : DIGRAPH.V_LISTS.LIST;

P : DIGRAPH.V_LISTS.LIST;

NEW_NODE : OP_INFO;

begin
while DIGRAPH.V_LISTS.NON_EMPTY (V) loop
DIGRAPH.SCAN_QHILDREN(DIGRAPH.V_pISTS.VALUE(V), THE_GRAPH, S);
DIGRAPH.SCAN_PARENTS (DIGRAPH.V_LISTS.VALUE(V), THE_GRAPH, P);
NEW_NODE.NODE := DIGRAPH.V_LISTS.VALUE(V):;
NEW_NODE.SUCCESSORS := §;
NEW_NODE.PREDICESSORS := P;
OP_INFO_LIST.ADD (NEW_NODE, THE_OP_INFO_LIST);
DIGRAPR.V_LISTS.NEXT(V);
end loop;
end BUILD_OP_INFO_LIST;

procedure PROCESS_EST_END_NODE
(MAY_BE_AVAILABLE: in out SCHEDULE_INPUTS_LIST.LIST;
OPT : in OPERATOR) is

322 .

== txansfex the OPERATOR xecoxrd into SCHEDULE_INrO rxecord and adds

== that into the MAY_AVAILABLE_LXST for the Earliest Staxt Scheduling
== Algorithm. Xnitially all the values arxe zexa.

NEW_NODE : SCHEDULE_XNPUTS;

bagin
NEW_RODE,THE_OPERATOR := OPT.THE_OPERATOR_ID;
SCHEDULE_XNPUTS_LIST.ADD (NEW_NODE, MAY_BE_AVAILABLE);
end PROCESS_EST_END_NODE;
procedure PROCESS_EDL_END_NRODE
(MAY_BE_AVAILABLE: in out SCHEDULE_INPUTS_LIST.LIST;
oPT ¢ in OPERATOR) is
~-transfer the ODPERATOR xecoxd into SCHEDULE INFO xecoxd and adds that
~-into the MAY_AVAILABLE_LXST for the Earliest Deadline Scheduling
== Algorithm. Initially all the valuea are zero.
NEW_NODE : SCHEDULE_INPUTS;

beain
NEW_NODE.THE_OPERATOR := OPT.THE_OPERATOR_ID;
NEW_NODE.THE_LOMER := 0; -~ we can omit this, Decause it’s already zero,
if OPT.THE_WITHIN /= 0 then
NEW_HODE.THE_UPPER := OPT.THE_MITHIN;
elae
NEW_NODE.THE UPPER := OPT.THE_PERIOD;
end 1if;
SCHEDULY_XNPUTS_LIST.ADD (NEM_NODE, MAY_BE AVAILABLE) ;
end PROCESS_EDL_END_NODE;

function FIND_OPERATOR(THE_OP_INFO_LIST : in OP_INFO_LIST.LIST;
1D ¢ in OPERATOR_ID)
retuxn OP_INFO_LIST.LIST is
-~ finds the operator that we use currently to get the required information.
TEMP : OP_INFO_LIST.LIST := THE_OP_INFO_LIST;

-~ assumed that it’s guaranteed to find an operator.
begin
while OP_INFO_LIST.NON_EMPTY (TEMP} loop
if VARSTRING.EQUAL (OP_IRFO_LIST.VALUE (TEMP) .NODE.THE_OPERATOR_ID, ID) then
return TEMP ;
end if;
OP_INFO_LIST.NEXT (TEMP);
end loop;
end FIND_OPERATOK;

N

function CHECK_.ENDA(THE_NODE : in OP_INFO;
AGENDA : in SCHEDULE_INPUTS_LIST.LIST)
return BOOLEAN is
==~ checks the AGENDA list to see if all the predecessors of the
-~ operator are in there.
P ! DIGRAPH.V LISTS.LIST :m THE_NODE,.PREDICESSORS;

323

A i SCHEDULE_INDUTS_LIST.LIST t= AGENDA;
OK : DOOLEAN im FALSE: ‘
begin

while DIGRAPH.V_LISTS.NON_EMPTY (P) loop
while SCHEDULE_INDPUTS_LXST.NON_EMPTY (A) loop
i£ VARSTRING.BQUAb(DIGRAPH.V_pISTS.VALUE(P).TNQ_OP!HATOR_;D,
SCHEDULE_XNPUTS_LIST.VALUE (A) .THE_OPERATOR) then
OK = TRUE;
exit;
end if;
SCHEDULE_INPUTS_LIST.NEXT(A);
end loop;
1€ OK then
DIGRAPH.V_LISTS.REXT(DP);
A = AGENDA;
OK :» FALSE;
elae
~= 1f the pointer reached to the end of the AGENDA, it mzana the
== operator is not in AGENDA, if so return FALSL,
return OK;
end if;
end loop;
== if the pointer reached to the end of the predecessor list, it
-~ means the operatox is in AGENDA.

OK := TRUE;
return OK;
end CHECK_AGENDA;
procedure EST_INSERT .
{TARGET t 4n SCHEDULQ_INPUTS:

MAY_BE AVAILABLE : in out SCHEDULE_IN2UTS_LIST.LIST) is
== used to insext the operators into the MAY BE_AVAILABLE list to
~- schedule for the Earliest Start Scheduling Algorithm.

PREV : SCHEDULE_INPUTS_LIST.LIST := null;
T : SCHEDULE_INPUTS_LIST.LIST := MAY_BE_AVAILABLE;

begin
if HOT (SCHEDULE_INPUTS_LIST.NON EMPTY(T)) then
=~ when MAY BE AVAILABLE list is empty, add the operator immediately.
SCHEDULE_INPUTS_LIST.ADD (TARGET, MAY_ BE_AVAILABLE) ;
elae

== in case the target operator’s EST is smaller than the first operator’s

-~ EST ad? the operator to the list immediately.

if TARGET.THE_LOWER < SCHEDULE_INPUTS_LIST.VALUE(T).THE_LOHBR then
SCHEDULE, _INPUTS_LIST.ADD (TARGET, MAY BE _AVAILABLE);

-~ in case the operator with the same EST is in the list, do not insert,

-~ otherwise; dinsert the operator in its order.

elsif NOT(SCHEDULE_INPUTS_LIST.MLMBBR(TARGBT, MAY BE_AVAILABLE))} then
while SCHEDULE_INPUTS_LIST.NON_EMPTY(T) loop

. °

if TARGET.THE_LOWER > SCHEDULE_XNPUTS_LIST.VALUK (T) . THE_LOWER then

PREV = T;

SCHEDULE_XNPUTS_LIST.NEXT(T);

elae
exit;
end if;
end loop;

SCHEDULE_INPUTS_LIST.ADD (TARGET, T);
1€ SCHEDULE_INPUTS_LIST.NON_EMPTY (PREV) then

PREV NEXT := T
alae
HAY_p!_AVAILAbLE H B ¥
end 1f£;
and if;
end if;
end EST_INSERT;

procedure EDL_INSERT
(TARGET :
MAY BE AVAILABLE :

in SCHEDULE_INPUTS;
in out SCHEDULE_INPUTS_LIST.LIST) is

-= used to insert the operators into the MAY_BE_AVAILABLE list to
-~ schedule for the Earliest Deadline Scheduling Algorithm.

PREV : SCHEDULE_INPUTS_LIST.LIST
SCHEDULE_INPUTS_LIST.LIST

T :

begin

t= null;
t= MAY BE AVAILABLEK;

if NOT (SCHEDULE_XNPUTS_LIST.NON_ EMPTY(T)) then
SCHEDULE_XNPUTS_LIST.ADD (TARGET, MAY_BE AVAILABLE);

alae

if TARGET.THE_UPPER < SCHEDULE_INPUTS_LIST.VALUE(T) .THE_UPPER then
SCHEDULE_INPUTS_LIST.ADD (TARGET, MAY_BE_AVAILABLE) ;
elaif NOT (SCHEDULE_INPUTS_LIST.MEMBER(TARGET, MAY BE_AVAILABLE)) then
while SCHEDULE_INPUTS_LIST.NON_EMPTY(T) loop
if TARGET.THE_UPPER > SCHEDULE_INPUTS_LIST.VALUE (T) .THE_UPPER then

PREV = T;

SCHEDULE_INPUTS_LIST.NEXT(T);

else
exit;
end if;
end loop;

SCHEDULE_INPUTS_LIST.ADD (TARGEY, T);
if SCHEDULE_INPUTS LIST.NON_EMPTY (EREV) then

PREV . NEXT := T;
else
MAY BE _AVAILABLE
end if;
end if;
end if;
end EDL_INSERT;

tm T;

325

function QPBRRTOR_IN_pIST(OPT;}D s dn OPERATOR_ID;
IN_LIST in SCN!DULt_}NPUTS_pIST.LIST)
return BOOLEAN ia
== thia i3 used to check if the opaxators in successors list are
-=- alxeady in the complete MAY BE_AVAILABLE list for both EST and
~= EDL algorithma.
TEMP : OPERATOR_ID;
L ! SCHEDULE_INPUTS_LIST.LIST := IN_LIST;

begin
while SCHEDULE_INPUTS_LXST.NON_EMPTY (L) loop
TEMP :~ SCHEDULY_INPUTS_LIST.VALUE (L) .THE_OPERATOR;
if VARSTRING.FQUAL(TEMP, OPFT_XD) then
return TRUE;
elae
SCHEDULE_XNPUTS_LIST.NEXT (L) ;
end L1£;
end loop;
return FALSE;
end OPERATOR_IN_LIST;
procedura EST_INSERT SUCCESSORS_OF_OPT
(THE_NODE : in OP_INFO;
STOP_TIME : in VALUE;
MAY_BE_AVAILABLE : in out SCHEDULE_;NPUIS_LIST.LIST) is
-- inserts the aucceszors of the selected operator into
== MAY_BE AVAILABLE list in their oxders if they do not
-~ exist in the liast.

S ¢ DIGRAPH.V_LISTS.LIST := THE_NODE.SUCCESSORS;
T ¢ OPERATOR;
opT : OPERATOR := THE NODE.NODE;
TARGET : SCHEDULE_INPUTS;
begin

while DIGRAPH.V_LISTS.NON_EMPTY(J) loop
T := DIGRAPH.V_LISTS.VALUE(S);
if NOT (OPERATOR_IN_LIST (T.THE_OPERATOR_ID, MAY_RE _AVAILABLE!) then
TARGET.THE_OPERATOR := DIGRAPH.V_LISTS,VALVE(S) .THE_OPERATOR_ID;
TARGET .THE_LOWER := STOP_TIME;
EST_XINSERT (TARGET, MAY BE AVAILAALE);
end if;
DIGRAPH.V_LISTS.NEXT(S);
end loop;
end EST_INSERT_SUCCESSORS_OF_OPT;
procedure EDL INSERT_SUCCESSORS_OF_OPT
{THE_NODE : in OP_INFO;
STOP_TIME : in VALUE;
COMPLETE_LIST : in out SCHELULE_INPUTS LIST.LIST;
MAY BE AVAILABLE : in out SCHEDULE_INPUTS_LIST.LIST) is
-- inserts the successors of the selected operator into
=— MAY _BE_AVAILABLE list in their oxdexs if they do not exist in

326

-= the liast,

S ¢ DIGRAPH.V_LISTS.LIST := THE_NODE,.SUCCESSORS;
T : OPERATOR;
orT s OPERATOR :» THE_NODL.NODE;
TARGET : SCHEDULE_XNPUTS;
begin

while DIGRAPH.V_LISTS.NON_EMRTY (S) loop
T :~ DIGRAPH.V_LISTS.VALUE(S);
if NOT(OPERATOR_IN_LIST(T.THE_OPERATOR_ID, COMPLETE_LIST)) then
TARGET.THE_OPERATOR := T,THEL_OPERATOR_ID;
TARGET . THE_LOWER := STOP_ TIME;
== while we arxe adding the juccesasors, the deadline of these operatora
=- are calculated by adding eithex their finish within if exists, or
-~ period to the stop_time of the last operator,
if T.THE_WITHIN /= 0 then
TARGET.THE_UPPER := STOP_TIME + T.THE WITHIN;
elae
TARGET.THE_UPPER := STOP_TIME + T.THE_PERIOD;
end if;
ZDL_INSERT (TARGET, MAY_BE_AVAILABLE) ;
end if;
DIGRAPH.V_LISTS.NEXT(S});
end loop;
end EDL_INSERT SUCCESSORS_OF_OPT;

procedure PROCESS_EST_AGENDA
(THE_OP_INFO_LIST: in OP_INFO_LIST.LIST;
MAY BE AVAILABLE: in out SCHEDULE_INPUTS_LIST.LIST;
AGENDR ¢ in out SCHEDULE_INPUTS_LIST.LIST;
HARMONIC BLOCK LENGTH : in INTEGER) is

-- process the MAY BE_AVILABLE list to produce AGENDA list which is
~-- used to create a schedule for Earlieat Start Scheduling Algorithm.

v ¢ SCHEDULE_INPUTS_LIST.LIST := MAY_ BE AVAILABLE;
] : SCHEDULE_INPUTS_LIST.LIST;
A ¢ SCHEDULE_INPUTS_LIST.LIST;
TEMP : OP_INFO_LIXST.LIST;
TARGET ¢ SCHEDULE_INPUTS;
NEW_INPUT : SCHEDULE_INPUTS;
THE NODE : OP_INro;
CONTINUE : BOOLEAN;
STOP_TIME : VALUE = 0;
OPT ¢ SCHEDULE_INPUTS;
EST ¢ INTL JER;

begin

while SCHED(LE_INPUTS_LIST.VALUE (V) .THE_LOWER < HARMONIC_ BLOCK_LENGTH loop
== no need to check if all the predicessors axe in the AGENDA, bacause
== this is the first node and has no predecessors.
OPT := SCHEDULE_INPUTS_LIST.VALUE{V);
TZMP := FIND_OPERATOR (THE_OP_INFO_LIST, OPT.THE_OPERATOR);

327

¥ I SR I TN NPT I SPC YNNI STIY < W |

[P TR R

PR

if OPT.THE_LOWER > 0 then

COHTINUE = CHECK_AGENDA(THE _NODE, AGENDA);
elae

CONTINUE := TRUE;
end 1£;

THE_NODE :» OP_INFO_LIST.VALUE (TEMP) ; .

-~ if the opt.is not an end node check if all ita successors in AGENDA.
-~ if not, select the other operator and repeat the same procedurs,
while NOT CONTINUE loop
SCHEDULE_XNPUTS_LIST.NEXT (V) ;
OPT :» SCHEDULE_INPUTS_LIST.VALUE(V);
TEMP t= FIND_OPERATOR (THE_OP_INFO_LXST, OPT.THE_OPERATOK);
THE_NODE :=~ OP_INFO_LIST.VALUE (TEMP);
if OPT.THE_LOWER > 0 then
CONTINUE := CHECK_AGENDA{THE_NODE, AGENDA);
elae
CONTINUE := TRUL;
end if;
end loop;
TARGET (= SCHEDULE_INPUTS_LIST.VALUE (V)
SCHEDUGE_INPUTS_LIST.REMOVE (TARGET, MAY_BE_AVAILABLE) ;
Exception_Operstor := TARGET.THE_OPERATOR;
VERIFY_TIME_LEFT (HARMONXC_BLOCK_LENGTH, STOP_TIME);
iL TARGET .THE_LOWER > STOP_TIME then
-- zero initially for the first one
TARGET.THE_START := TARGET.THE_LOWER;
else ‘
TARGET.THE_START :» STOP_TIME;
end if;
STOP_TIME := TARGET,THE_START + THE_NODE.NODE.THE_MET;
TARGET.THE STOP := STQP_TIME;
SCHEDULE_XNPUTS_LIST.ADD (TARGET, AGENDA);
EST t= TARGET.THE_START + THE_NODE.NODE.THE PERIOD:

-- 1f the operator can be scheduled again, put it back into the
== MAY_BE AVAILABLE list in its order with the new EST.
NEW_INPUT.THE_OPERATOR :» TARGET.THE_OPERATOR;
HEW_INPUT.THE_LOWER :=~ EST;
EST_INSERT (NEW_INPUT, MAY BE_AVAILABLE) ;
EST_INSERT SUCCESSORS_OF OPT{THE_NODE, STOP_TIME, MAY_ BE_AVAILABLE);
V := MAY BE_AVAILABLE;
end loop:
A := AGENDA;
SCHEDULE_INPUTS_LIST.LIST REVERSE (A, AGENDA);
end PROCESS_EST_ AGENDA;
procedure PROCESS_EDL_AGENDA
(THE_OP_INFO_LIST: in OP_INFO_LIST.LIST;
COMPLETE LIST ¢ in out SCHEDULE_INPUTS_LIST.LIST;
AGENDA : in out SCHEDULE INPUTS_LIST.LIST;

°

RAEMONIC_BLOCK_LENGYH : in INTEGER) is

-~ process the MAY BE AVILABLE liat to produce AGENDA liat which is
== used to create a schedule for Earliest Deadline Scheduling Algorithm.

v ¢ SCHEDULE_INPUTS_LIST,LIST := COMPLETIE_LIST;
TEMP ¢ SCHEDULE_INPUTS_LIST.LIST := COMPLEIEK_LIST;
A i SCHEDULE_INRUTS_LIST.LIST;
T : OP_INFO_LIST.LIST;
PREV : SCHEDULE INPUTS_LIST.LIST := null;
TARGET ¢ SCHEDULE_INPUTS;
NEW_IRPUT : SCHEDULE_XNRUTS;
THE_NODE : OP_INFO;
CONTINUE : PBOOLEAN;
STOP_TIME : VALUE := 0;
orT ¢ SCHEDULE_INBUTS;
EST : INTEGER:
begin
while SCHEDULE_XNPUTS_LIST.NON_EMPTY (TEMP) loop

if SCHEDULE_INPUTS_LIST.VALUE (TEMP) .THE_LOWER < HARMONIC BLOCK LENGTH then

-~ no need to check if all the predecessors are in the AGENDA
OPT := SCHEDULE_INPUTS_LIST.VALUE(V);

T - FINQJOPEIATOR(THt_OP_}NfO_pIST, OIT.THE_QIIRATOR):
THE_NODE :=~ OP_INFO_LIST.VALUE(T);

if OBT.THE_LOWER > O then

-~ when the earlieat start time of the operator is not xzero, we
~=- need to check if all the predicessors of the opexrator axe in
-= AGENDA. No check otherxwise.
CONTINUEL :=~ CHECK_AGENDA (THE_NODE, AGENDA) ;

else
CONTINUE :~ TRUE;

end if;

~—- if the opt. is not an end node check if all its succesaoxs
-= in AGENDA, if not, select the othexr operator and xepeat
-~ the same procedure.
while NOT CONTINUE loop
SCHEDULE_INPUTS_LIST.NEXT(V):
OPT (= SCH!DULB_;NPUTS_LIST.VALU&(V);
T := FIND_OPERATOR (THE_OP_INFO_LIST, OPT.THE_OPERATOR);
THE_NODE :m OP“;NFQ_LIST.VALUE(T);
if OPT.THE_LOMNER > O then
CONTINUE := CHECK_AGENDA (THE_NODE, AGENDA);
else
CONTINUE := TRUE;
end if;
end loop;
TARGET := SCHBDULE_;NPUTS_LIST.VALU!(V);
SCHEDULE_INPUTS_LIST.REMOVE (TARGET, TEMP);
if SCHEDULE_;NPUTS_LIST.NON_;HPT!(?REV) then

329

PREV, REXT = TEME;
clse
COMPLETE_LIST :w TEMP;
end if;
Exception _Operator :m TARGET.THE_OPERATOR;
VERITY_TIME_LEET (MARMONXC_BLOCK LENGTH, STOP_TIME);
44 TARGET.THE_LOWER > STOP_TIME then
-=zexo initialdly for the firat one
TARGET.THE_START i« TARGLT.THL_LOWER;
elae
TARGETL.THE _START t= STOP_TIME;
end 1£;
STOP_TINS :m TARGET.THE_START + THE NODE NGDE,THE MEY;
TARGET,THE_STOP :m STOP_TIME;
SCHEDULE_INPUTS_LIST,ADD {TARGET, AGENDA) ;
EST := TARGIT.THE_START + THL_NODE.RCDE,THE PERXOD;
NEW_IRPUT.THE_OPERATOR = TARGEX.THE _OPERATOR;
NEW_XNPUT.THE_LOWER := EST;

1£ THE_NODE.NODE.THE _WITHIN /= 0 then

NEW INPUT.THE_UPPER :»= EST + THE_NODE.NODE.THE WITKIN;
else

NEW_INPUT.THE_UPPER :m EST + THE_NODE.NODE.THE_PERIOD;
end 1£;
£DL_XNSERT (NEW_INPUT, TEMP);

-- this is to keep track of the COMPLETL_LIST pointer

if SCHEDULE_XNPUTS_LIST.NON_EMPTY (PREV) then
-- the pointer ia pointing a xecoxd othexr than firs’, one.
PREV . HEXT := TEMP;

elae
-~ the pointer is pointing the first record in the list,
COMPLETE _LIST := TEMP;

end if;

EDL_INSERT_SUCCESSORS_OF_OBT

(THE_NODE, STOP _TIME, COMPLETE LIST, TEMP);

-~ this is to keep track of the COMPLETE LIST pointer

if SCHEDULE_;NPUTS_LIST.NO“_EMPTY(PREV) then
~-= the pcinter is pointing a record other than firs: one.
PREV.NEXT = TEME;

elye
~=- the pointer is pointing the first record in the list.
COMPLETE LIST := TEMP;

end if;

elye

PREV (=~ TEMP;
SCHEDULE_XNPUTS_LIST.NEXT (TEMP);

330

. da

Lanw

‘ V i~ TEMDP;
end if;

and loop;
while SCHEDULE_INPUTS_LIST,NON_EMPTY (TEMP) loop

L€ not (OPERATOR_IN_LIST
{SCHEDULE_INPUTS_LIST.VALUE (YEMP) . THE_OPERATOR,

AGENDA)) then
Bxception__Opeu:o: t= SCHEDULE_INPUTS_LIST.VALUE {Taup) +TRE_OPERATOR;
raj-e MISSED_QRERATOR;
end 1£;
SCHEDILE_XNDUTS LIST.NEXT {TeMR)
end loop;
A 3= AGENDA;
SCHEOULE_INPUTS_LIST.LIST_REVERSE (A, AGENDA);
end PROCESS_EDL_AGENDA;
procedure SCHEDULE_WITH_EARLXEST_START
(THE_GRARH : in DXGRAPH.GRAPM;
AGENDA : in out SCHEDULE_INPUTS_LIST.LIST;
HARMONIC BLOCK _LENGTH : in INTEGER) ls
~= used to £find a feasible scheduvla for Earliest Start Scheduling Algorithm.
THE_OP_INFO_LYST : OP_INFO_LXST.LIST;
MAY_BE AVAILABLE : SCHEDULE_INRPUTS ILIST,LISY;
H_B_L : XNTEGER := HARMONIC BLOCK_LENGTH;
L : OP_INFO_LIST,LIST;
B : OP_INFO;

. begin

BUILD_OP_INFO_LIST(THE_GRAPM, THE OP INFO_LIST):

L := THE_OP_XNFO_LIST;

~= put all the end nodes, which has no predicessors, into

~~ MAY_BE_AVAILABLE lisat

while OF_INFO _LIST.NON_EMPIY (L} loop

P t= OP_INFO LIST.VALUE(L):

i NO‘r(DIGW&.V_LIST&NON_MTY(P.PM:DIC!SSORS)) then
PROCESS_EST_END_NODE (MAY BE_AVAILABLE, P.NODE);

end if;

OP_INFO_LXST.NEXT(L);

end loop;

PROCESS_EST_AGENDA (THE_OP_XNFO_LIST, MAY_BE_AVAILABLE, AGENDA, M B L);
end SCHEDULE _NITH_EARLIEST_ START;
procedure SCHEDULE_WITH EARLIEST DEADLINE

(THE_GRAPH
AGENDA
HARMONIC_ BLOCK_ LENGTH

in DIGRAPH.GRAPM;
in out SCHEDULE_INPUTS_LIST.LIST;
in INTEGER) is

LY N Y S

~-- used to find a feasible schedule for Earliest Daadline Scheduling

-= Algorithm
THE_OP_INFO_LIST : OP_INFO_LIST.LIST;
MAY BE AVAILABLE : SCHEDULE_INPUTS_LIST.LIST;

‘ 331

L : XNIEGER :» HARMONIC_BLOCK_LENGTH;
OP_INFO_LIST.LIST;
oP_INFO;

H‘
L
P

B

begin
BUXLD_OP_INFO_LIST (THE_GRAPM, THE_OP INFO_LIST);
L := THE_OP_XYNFO_LXST;
~- put all the end nodus, which hxs no predecessors, into
~= MAY_DE_AVAILABDLE list
while OP_INFO_LIST.NON_EMBTY (L) loop
P iw OP_XNFO_LXST.VALUE(L);
if HOT{DIGRAPH.V_LISTS.NON_EMPTY (P.PREDICESSORS}) then
PROCESS_FEDL_END_NODY (MAY_BE_AVAILABLE, P.NODE);
end iE;
OP_INFO_LIST.NEXT(L};
end loop;

PROCESS_EDL AGENDA (THE_OP_XINFO_LIST, MAY BE AVAILABLE, AGENDA, H B L);

end SCUEDULE_WITH_EARLIEST_DEADLINE;

procedure CREATE_STATIC_SCHEDULE (THE_GRAPH

in DIGRAPH.GRAPN;

THE_SCHEDULE_INPUTS ! in SCHEDULE_INPUTS LIST.LIST;

HARMONIC_BLOCK_LENGTH in INTEGER) is

-~ creates the atatic schedule output and prints to “ss.a" file.

V_LIST : DIGRAPH.V_pISTS.LIST tm THB_GRAPH.VERTICES:
S : SCHEDULE_INRPUTS_LIST.LIST := THE_SCHEDULE_XNPUTS;
SCHEDULE : TBXT_;O.FILE_?!PE;

OUTPUT : TEXT_YO.FILE_MODE := TEXT_XO.OUT_FILE;
COUNTER : INTEGER := 1;

package VALUE_IO is new TEXT_IO.INTEGER_IO (VALUE);
use VALUE_IO;

package INTEGERIO is new TEXT_XO.INTEGER_XO(INTEGER);
use INTEGERIC;

begin

TEXT_XO.CREATE (SCHEDULE, OUTPUT, “/n/suns2/work/caps/prototypes/ss.a");

TEXT_XO.PUT_LINE (SCHEDULE, “with TL; use TL;"“):

TEXT_XO.PUT_LINE (SCHEDULE, "with DS_PACKAGE; use DS_PACKAGE;");

TEXT_XO,PUT (SCHEDULE, ®"with PRIORITY DEFINITIONS; “);
TEXT_IO.PUT_ LINE (SCHEDULE, “use PRIORITY DEFINITIONS;:");
TEXT_I10.PUT_LINE (SCHEDULE, "with CALENDAR; use CALENDAR;");
TZX™ I0.PUT_LINE(SCHEDULE, "with TEXT_IO; use TEXT IO0:;%);
TEA._I0.PUT _LINE (SCHEDULE, "procedure STATIC SCHEDULE is");

while DIGRAPH.V_LISTS.NON_EMPTY(V_LIST) lo-p
TEXT_I0.SET_COL (SCHEDULE, 3);

VARSTRING,PUT (SCHEDULE, DIGRAPH.V_LISTL £{V_LXST) ,THE_OPERATOR_ID);

TEXT_YO.PUT_LINE (SCHEDULE, "_TIMING_ERR\ ¢ «eption; ") ;
DIGRAPH.V_LISTS.NEXT(V_LIST):
end loop;

KX

vad

e s ABRS a.

TEX&_IO.SBT;FOL(SCHEDULB, 3);
TBXT_IO.PUT_LINS(SCHEDULE, "task SCHEDULE ia%);
TEXT_10.SET_COL (SCHEDULE, LY R
TEXT_I0.PUT_LINE (SCHEDULE, “pragma priority (STATIC_SCHEDULE_PRIORITY);");
TEXT_XO.SET_COL (SCHEDULE, 3);
TEXT_}O.PUT_LINB(SCHEDULS, "and SCHEDULE;®);
TtXT_IO.NBﬂ_LINE(SCHBDULB);
TEXT_XO.SET_COL (SCHEDULE, 3);
TBX{_IO.PUTLPINB(SCHBDULE, “task hody SCHEDULE ia"j;
TEXT_XO.PUT (SCHEDULE, * PERIOD : constant := %);
INTEGERIO.PUT (SCHEDULE, HARMONIC BLOCK LENGTH, 1);
TEXQ_IO.PUTLPIHB(SCNtDULB, ¥ 2ab ¥
§ = TH!_ﬁCKEDUL!_INPUTS;
while SCHEDULE_INPUTS_LISY.NON_EMPTY(S) loop
TBXT_;O.SET_QOL(SCHtDULt, S);
VARSTRING.PUT (SCHEDULE, SCH!DULQ_INPUTS_pIST.VALU!(3).TH!_QIIRATOR):
TEXT_YO,PUT (SCHEDULE, "_STOP_TIME®);
INTEGERIO.PUT (SCHEDULE, COUNTER,1):
TEXT_XO.PUT (SCHEDULE, " : constant i= "):
VALUQ_IO.PUT(SCHBDULI, SCH!DULB_;NPUTS_LIST.VALUI(3).TH&_;TOP, 1);
TEXT_IO,PUT_LINE (SCHEDULE, *;%);
SCHBDUL!“INPUTS_pIST.NEXT(3);
COUNTER := COUNTER + 1;
end loop;
TEXI_;O.SET_QOL(SCHEDULB, 5):
TBXQ_IO.PUT_LINE(SCHEDULE, "SLACK_TIME : duration;*);
TEXT_;O.SBT_FOL(SCHEDULB, 8):
TEXQ_IO.PUI_pIN!(SCHEDULI, “START_OF PERIOD : time := clock;"%);
TEXT_XO.PUT_LINE (SCHEDULE, "“begin®);
TEXT_JO.PUT_LINE (SCMEDULE, ™ loop");
TBXT_IO.SET_COL(SCHBDULB, 5);
TEXT_;O.PUT(SCHEDUL!, *hegin®);

S :=~ THE_SCHEDULE_INBUTS;

COUNTER := 1;

while SCHEDULQ_INPUTS_LIST.NON_:H!T!(8) loop
TEXT_XO.SET_COL (SCHEDULE, 1);
VARSTRING.PUT (SCHEDULE, SCH!DULE_INPUTS_pIST.VALU!(8).THI_p?lRATOR);
TEXT_XO.PUT_LINE (SCHZDULE, "a%):
TEXT_I0.SET_COL(SCHEDULE, 1:
TEXT_XO.PUT(SCHEDULE, “SLACK_TIME := START_Or_ PERIOD + ");
VARSTRING.PUT (SCHEDULE, scnznuna_xupurs_pxsr.VALU:(5).rul_pr:naron);
TEXT_I0.PUT(SCKEDULE, ®_STOP_TIME"):;
INTEGERIO.PUT (SCHEDULE, COUNTER,1):
TEXT_XO.PUT_LINE (SCHEDULE, * - CLOCK: %) ;
TEXT_IO.SET_ COL (SCHEDULE, 1):
TEXT_XO0.PUT_LINE (SCHEDULE, *if SLACK TIME >= 0.0 then");
TEXT_IO.SET_COL (SCHEDULE, J);
TEXT_IO.PUT_LINE (SCHEDULE, *delay (SLACK TIME);:"):
TEXT_IO.SET_COL(SCHEDULE, 7);
TEXT_IO.PUT_LINE (SCHEDULE, “else");

333

TEXT_XO.PUT (SCHEDULE, "raise ");

VARSTRING.PUT (SCHEDULE, SCHEDULE_INPUTS_LIST.VALUE(S) . THE_OPERATOR) ;

TEXT_XO,PUT_LINE (SCHEDULE, *_TIMING_ERROR;");

TEXT_XO.SET_COL (SCHEDULE, 7);

TEXT_IO.PUT_LIHB(SCHBDULE, “end i£;");

SCHEDULE_XINPUTS_LIST.HEXT(S);

if SCHEDULE_XNPUZS_LIST.NON_EMETY (S) then
~- polinter is pointing to the next record after this.
TEXT_XO.SET_COL (SCHEDULE, 7);
TEXT_XO.PUT (SCHEDULE, "“delay (START_OF PERIOD + ");
VALUE_XO.PUT (SCHEDULE, SCHEDULE_INRPUTS_LIST.VALUE (S) .THE_START, 1);
TEXT_YO.PUT_LINE (SCHEDULE, ® - CLOCK);");
TEXT_XO.NEW_LINE (SCHEDULE) ;

end if;

COUNTER :» COUNTER + 1;

end loop;

TEXT_XO.SET_COL (SCHEDULE, 9); ‘ :

TEXT_10.SET_COL (SCHEDULE, 7);

TEXT_YO,PUT_LINE {SCHEDULE, "START_OF_PERIOD :w START_OF_PERIOD + PERIOD;");
TEXT_XO.SET_COL (SCHEDULE, 7);

TEXT_I0.RUT_LINE (SCHEDULE, "delay (START_OF_RERIOD - clock);");

TEXT_JO.SET_COL (SCHEDULE, 7);

TEXT_XO.PUT_LINE (SCHEDULE, “exception"):

V_LIST := THE_GRAPH.VERTICES;

while DIGRAPH.V_LISTS.NON_EMPTY (V_LIST) loop
TEXT_IO.SET_COL (SCHEDULE, 9); .
TEXT_XO.PUT (SCHEDULE, "when %);
VARSTRING.PUT (SCHEDULE, DIGRAPH.V_LISTS.VALUE(V_LIST) .THE_OPERKTOR ID);
TEXT_XO.PUT_LINE (SCHEDULE, ™_TIMING_ERROR =>");
TEXT_XO.SET_COL(SCHEDULE, 11);
TEXT_IO.PUT(SCHEDULE, “PUT_LINE(""timing errxor from operator “):
VARSTRING.PUT (SCHEDULE, DIGRAPH.V LISTS.VALUE(V_LIST) .THE_OPERATOR_ID);
TEXT_IOQ.PUT_LINE (SCHEDULE, """);%);
TEXT_IO.SET_COL (SCHEDULE, 11);
TEXT_10.PUT_LINE (SCHEDULE, “START OF PERIOD := clock;");
DIGRAPH.V_LISTS.NEXT(V_LIST);

end loop;

TEXT_I0.SET_COL (SCHEDULE, 7);
TEXT_IO.PUT_LINE (SCHEDULE, "end;");
TEXT_I0.SET_COL (SCHEGULE, 5);
TEXT_XO.PUT_LINE (SCHEDULE, "end loop;");
TEXT_I0.SET_COL (SCHEDULE, 3);
TEXT_XO.PUT_LINE (SCHEDULE, "end SCHEDULE;"™);
TEXT_IO.NEW_LINE (SCHEDULE) ;

TEXT_IO.PUT_LINE (SCHEDULE, "begin®);
TEXT_IO.SET_COL(SCHEDULE, 3);
TEXT_YO.PUT_LINE (SCHEDULE, "null;");
TEXT_XO.PUT_LINE (SCHEDULE, "end STATIC_SCHEDULE;");

°

end GREATE_STATIC_SCHEDULE;

end OPERATOR _SCHEDULER;

335

APPENDIX AB STATIC SCHEDULER LIST STRUCTURE

~= file: sequence_3s.a
-= author: murat kilic
- isaac mostov
- tony davis
-~ date: aep 89

-- modified: oct 89 by muzat kilic

generic
type ITEM is private;

package SEQUENCES is
type NODE;

type LIST is access NODE;
type NODE is

record
ELEMENT : ITEM;
NEXT : LIST;

end record;
BAD_VALUE : exception;
function EQUAL(Ll1 : in LIST; L2 : in LIST) return BOOLEAN;
procedure EMPTY (L : out LIST);
function NON_EMPTY(L : in LIST) return BOOLEAN;
function SUBSEQUENCE(L1l : in LIST; L2 : in LIST) xeturn BOOLEAN;
function MEMBER(X : in ITEM? L : in LIST) return BOOLEAN;
procedure ADD(X : in ITEM; L : in out LIST);
procedure REMOVE(X : in ITEM; L : in out LIST);
procedure LIST REVERSE{Ll : in LIST; L2 : in out LIST):;
procedure DUPLICATE (Ll : in LIST; L2 : in out LIST);

function LOOK4 (X : in ITEM; L : in LIST) return LIST;

336

procedure NEXT(L : in out LIST);
function VALUE(L : in LIST) returxn ITEM;

end SEQUENCES;

337

“ore

APPENDIX AC STATIC SCHEDULER LIST STRUCTURE

- 0 e S o T S S) S T S A T S T e Gy D S G g e P G up G S R, B 8 B B o -

£ile: sequence_b.a
author: murat kilic
isaac moatov
tony davis
date: aep 89

modified: oct 89 by murat kilic

wi

pa

- - e g s G 8 s s T S g 00 o = - o - o= o - - -

th UNCHECKED_DEALLOCATION;
ckage body SEQUENCES is
procedure FREE ia new UNCHECKED_ UEALLOCATION (NODE, LIST);

function NON_EMPTY(L : in LIST) return BOOLEAN is
begin
if L w null then
raturn FALSE;
elae
return TRUE;
end if;
end NON_EMPTY;

procedure NEXT(L : in out LIST) ia
beglin
if L /= null then
L = L NEXT;
end if;
end NEXT;

function LOCK4 (X : in ITEM; L : in LIST) xeturn LIST is
L1 : LIST := L;
begin
while NON_EMPTY(L1l) loop
if L1.ELEMENT = X then
return L1;
end if;
NEXT (L1) ;
end loop;
return null;
end LOOK4;

318

‘ procedure ADD(X : in ITEM; L : in out LIST) is
== ITEM IS ADDED TO THE HKEAD OF THE LIST

T : LIST i~ new NODE;

begin
T.ELEMENT := X,
T.NEXT = L;
L = T;

end ADD;

function SUBSEQUENCE(L1l : in LIST; L2 : in LIST) return BOOLEAN is
L : LIST := L);
begin
while NON_EMPTY (L) loop
if not MEMBER(VALUE(L), L2) then
return FALSE:
end if;
NEXT (L) ;
end loop;
return TRUE;
end SUBSEQUENCE;

function EQUAL(L1 : in LIST; L2 : in LIST) return BCOLEAN is
begin

return (SUBSEQUENCE(L1, L2) and SUBSEQUENCE (L2, Ll1}):
end EQUAL;

‘ procedure EMPTY (L : out LIST) ia
begin
L := null;
end EMPTY;

function MEMBER(X : in ITEM; L : in LIST) return BOOLEAN is
begin
if LOOK4 (X, L) /= null then
retuxn TRUE;
alse
return FALSE;
end if;
end MEMBER;

procedure REMOVE(X : in ITEM; L : in out LIST) is
CURR : LIST := L;
PREV : LIST :w null;
TEMP : LIST := null;
begin
while NON_EMPTY (CURR) loop
if VALUE(CURR) = X then
TEMP := CURR;
NEXT (CURR) ;
FREE (TEMP) ;
if PREV /= null then

‘II" 339

PREV.HEXT := CURR;
elie
L = CURR;
end if;
elao
BPREV := CURR;
NEXT (CURR) ;
end i£;
end loop;
end REMOVE;

procedure LIST REVERSE(Ll : in DIST; L2 : in out LIST) is
L { LIST :m Ll;
hegin
EMPTY (L2) ;
while NON_EMPTY (L) loop
ADD (VALUE (L), L2):
NEXT(L) ;
end loop;
end LIST_REVERSE;

procedure DUPLICATE(LL : in LIST; L2 : in out LIST) is
TEMP : LIST;
L ¢ LIST := L1;
begin
EMPTY (L2) ;
while NOM_EMPTY (L) loop
ADD {(VALUE (L), TEMP); '
NEXT (L) ;
end loop;
LIST_REVERSE (TEMP, L2);
end DUPLICATE;

function VALUE(L : in LIST) xetuxrn ITEM is
begin
if NON_EMPTY (L) then
return L.ELEMENT;
else
raise BAD_VALUE;
end if;
end VALUE;

end SEQUENCES;

APPENDIX AD STATIC SCHEDULER TOPOLOGICAL SORTER

-~ fila: t_soxt_s.a
-- author: murat_kilic
-~ date: oct 89

~- modified: dec 89 by murat kilic

with FILES;use FILES;
package TOPOLOGICAL_STRTER is

procedure TOPOLOGICAL_SORT
(G : in DIGRAPH.GRAPH;
PRECEDENCE_LIST : in out DIGRAPH.V LISTS.LIST);

end TOPOLOGICAL_SORTER;

341

APPENDIX AE STATIC SCHEDULER TOPOLOGICAL SORTER

- . S Gt 0 O Wy S W e - - - o = e) . - e o - -

-~ £ile: t_sort b.a
-~ author: murat kilic
-~ date: oct 89

-= modified: nov 89 by murat kilic

- v - o aon g

with TEXT X0;
with FILES; use FILES;

package body TOPOLOGICAL SORTER is

-~ This package determines the precedence order in which operators must
-~ execute in the fihal schzdule. This informstion is determined
-~ from the graph.

procedure TOPOLOGICAL_SORT (G: in DIGRAPH.GRAPH;
PRECEDENCE_LIST: in out DIGRAPH.Y_pISTS.LIST) is

-- This procedure determines which operators in the graph muat ‘
-- be axecuted before another.

Q : DIGRAPH.V_LISTS.LIST;

begin
DIGRAPH.T_SORT (G, PRECEDENCE_LIST);
Q := PRECEDENCE_LIST;

end TOPOLOGICAL_SORT;

end TOPOLOGICAL_SORIER;

¢

APPENDIX AF DYNAMIC SCHEDULER

e 0 a5 S e S A8 S S T - - e e o -

-— file: dynamic_scheduler.a
== author: frank palaxxzo
~-= datae: dec 89

~- modified: dec 89 by lauxa j, white

with TEXT_IO; uae TEXT_XO;
procedure DYNAMIC SCHEDULZR is
NON_CRITS ¢+ FILE_TYPE;
DSV3 ¢ FILE_TYPE;
IN_§TRING : STRING(1..72);
LAST : NATURAL;
begin
OPEN (NON_CRYTS, IN FILE, "/n/suns2/work/caps/prototypes/non_crits®);
CREATE (DSV3, OUT_FILE, "/n/suns2/woxk/caps/prototypes/ds.a®);
PUT_pINE(DSV3, "with TL; use TL;®);
PUT_LINE (DSV3, "package DS_PACKAGE is%);

‘ PUT_LINE (DSV3, ™ task DYNAMIC SCHEDULE is%);
-~ syastem defined priority for dynamic schedule
PUT_LINE(DSV3, " pragma priorxity (1):%):
PUT_LINE(DSV3, " end DYNAHIQ_SCH!DUL!;');
PUT_LINE(DSV3, “end DS_PACKAGE;");
N!ﬂ_LINB(DSVB):

PUT_LINE(DSV3, “"package body DS_PACKAGE is%);
PUT_LINB(DSV3, * task body DYNAMIC_SCHEDULE is");
PUT_LIRZ(DSV3, " begin®);
PUT_LINE (DSV3, " delay (1.0):"):
while not END_OF FILE(NON_CRITS) loop
begin
GET_LINE (NON_CRITS, IN_STRING, LASY) ;
pUT (DSV3, * ");
for INDEX in 1..LAST loop
PUT (DSV3, IN_STRING (INDEX)) ;
end loop;
PUT_LINE(DSV3, ";%);
end;
end lecop:
PUT_LINE(DSV3, ™ end DYNAMIC_SCHEDULE;");
PUT_LINE(DSV3, "end DS_PACKAGE:");
end DYNAMIC SCHEDULER;

9 ”

10.

11,

12,

LIST OF REFERENCES

Booch, G., Saftware Engincering with Ada, 2d ed., Benjamin/Cummings, 1987.

Schach, S. R, Sofrware Engineering, Aksen Associates, 1990.

Lamb, D. A, Sofrware Engineering Planning for Change, Prentice Hall,
1988.

Bochm, B. W,, "A Spiral Model of Software Development arxi Enhancement”,
ACM SIGSOFT Software Engineering Notes, v. 11, no, 4, pp. 14-26,
August 1986.

Lugi, "Software Evolution Through Rapid Prototyping", Computer, v. 22,
ne. 5, pp. 13-25, May 1989,

Boehm, B., "Verifying and Validating Software Requirements and Design
Specifications", IEEE Software, v. | no. 1, January 1984,

Lugi, "Handling Timing Constraints in Rapid Prototyping",
Proceedings of the 22nd Annual Hawaii International Conference on
System Sciences, IEEE Computer Society, pp. 4-17-424, January 1989.

Tanik, M. M. and Yeh, R. T., "Rapid Prototyping in Software Development”,
Computer, v. 22, n. 5, pp. 9-10, May 1989.

Luqi, Rapid Prototyping for Large Software System Design, Ph.D,
Dissertation, University of Minnesota, Minneapolis, Minnesota, May 1986,

Thorstenson, R. K., A Graphical Editor for the Computer Aided Prototyping
System, M.S. Thesis, Naval Postgraduate School, Monterey, Califomis,
December 1988,

Poster, S. W., Design of a Syntax Directed Editor for PSDL, M.S. Thesis,
Naval Postgraduate School, Monterey, California, December 1988.

Douglas, B. S., A Conceptual Level Design of a Design Database for the
Computer-Aided Prototyping System, M.S. Thesis, Naval Postgradusts School,
Monterey, California, December 1988.

)
VN S

i s

13.

14,

15.

16.

17.

18.

1.

20.

21.

23.

Galik, D., A Conceprual Design of a Sofrware Base Management System For
the Computer Aided Protofyping System, M.S. Thesis, Naval Postgraduate
School, Monterey, Califomia, December 1988,

Altizer, C., Implementation of a Language Translator for the Computer
Aided Prototyping System, M.S. Thesis, Naval Postgraduste School,
Monterey, Californias, December 1988,

Marlowe, L., A Scheduler for Critical Time Constraints, M.S. Thesis,
Naval Postgraduate School, Monterey, Califomia, December 1988.

Kilic, M., Static Schedulers for Embedded Real-Time Systems, M.S. Thesis,
Naval Postgruduate School, Monterey, California, December 1989.

Wood, M. B, Run-Time Support for Rapid Prototyping, M.S. Thesis,
Naval Postgraduate School, Monterey, Califomia, December 1988.

Ambler, A. L. and Bumett, M. M., "Influence of Visual Techriology on the
Evolution of Language Environments™, Computer, v. 22, n.10, pp. 9-22,
October 1989.

MacLennan, B, J., Principles of Programming Languages Design, Evaluation,
and Implemensation, 2d ed., Holt, Rinchart and Winston, 1987.

Naval Postgraduate School NPS52-89-026, Issues in Language Support for
Rapid Prototyping, by Luqi and Berzins, March 1989.

Rochkind, M. J., Advanced UNIX Programming, Prentice-Hall, 1985.

. Kaplan, S. M. and others, "An architecture for Tool Integration”, pp. 112-125, in

Advanced Programming Environments, Springetr-Verlag, 1986.

Raum, H. G., Design and Implementation of an Expert User Interface for the
Computer Aided Prototypirg System, M.S. Thesis, Naval Postgraduate School,
Monterey, California, December 1988.

. Shneiderman, B., Designing the User Interface: Strategies for Effective

Human-Computer Interaction, Addison-Wesley, 1987.

. Damell, P. A. and Margolis, P. E., Software Engineering in C,

Springer-Verlag, 1988.

345

26. Kemighan, B. W. and Ritchie, D, M., The C Programming Language, 2 ed,,

Prentice-Hall, 1988.

27. Naval Postgraduate School NPS52-89-028, Graphical Support for Reducing

28.

29.

30.

3l

32,

33

34,

35.

Informarion Overload in Rapid Prototyping, by Luqi and Bames P.q,
March 1989,

Reps, T. W. and Teitelbaum, T., The Synthesizer Generator: A System for
Constructing Language-Bused Editors, Springec-Verlag, 1989,

Reps, T. W. and Teitelbaum, T., The Synthesizer Generator Reference
Manual, 3d ed., Springer-Verlag, 1989,

Pamas, D. L., "Enhancing Reusability with Information Hiding", 7TT
Proccedings of the Workshop on Reusability in Programming, pp. 240-247,
1983.

Conn, R., The Ada Software Repository ard the Defense Data Network,
Zoetrope Publishing Co., Inc., New York, NY, 1987.

Johnson, R. E. and Foote, B., "Designing Reusable Classes", Journal of
Object-Oriented Programming, June/July 1988.

Matsumoto, Y., "A Software Factory: An Overall Approzch to Software
Production”, Turorial:Sofrware Reusability, Computer Society
Press of the 1EEE, 1987.

Burton, B. A, "The Reusable Software Library,", IEEE Software,
pp. 25-32, July 1987,

Pricto-Diaz, R. and Freeman, P., "Classifying Software for Reusability",
IEEE Software, pp.6-16, January 1987.

346

PA

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Dudley Knox Library

Code 0142

Naval Postgraduate School
Monterey, California 93943-5002

Director of Research Administration
Attn; Prof. Howard

Code 012

Naval Postgraduate School
Monterey, California 93943-5100

Chairman

Code 52

Naval Postgraduate School
Monterey, California 93943-5100

Chief of Naval Research
800 N. Quincy Street
Arlington, Virginia 22217-5000

Center for Naval Analysis
4401 Ford Avenue
Alexandria, Virginia 22302-0268

National Science Foundation

Division of Computer and Computation Research
Attn: Tom Keenan

Washington, D.C. 20550

Ada Joint Program Office
OUSDRE(R&AT)
Pentagon

Washington, D.C. 20301

k7

9.

10.

L1,

12.

13.

14.

15,

16.

Nuval Sea Systems Command
Attn. CAPT Jjoel Crandall
National Center #2, Suite 7N06
Washington, D. C, 22202

Naval Sea Systems Command
Attn. CAPT A. Thompson
National Center #2, Suite TN06
Washington, D, C, 22202

Commanding Officer

Naval Rescarch Laboratory
Code 5150

Attn, Dr. Elizabeth Wald
Washington, D.C. 20375-5000

Navy Ocean System Center
Atn, Linwood Sutton, Code 423
San Diego, California 92152-5000

Navy Ocean System Center
Attn. Les Anderson, Code 413
San Diego, California 92152-5000

Office of Naval Research

Computer Science Division, Code 1133
Attn, Dr. Van Tilborg

800 N. Quincy Street

Arlington, Virginia 22217-5000

Office of Naval Rescarch

Computer Science Division, Code 1133
Attn. Dr. R. Wachter

800 N. Quincy Street

Arlington, Virginia 22217-5000

Office of Naval Rescarch

Applied Mathematics and Computer Science, Code 1211
Attn. Mr. J. Smith

800 N. Quincy Street

Arlington, Virginia 22217-5000

17.

18.

19.

20.

21.

22.

23,

Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)

Attn, Dr, B. Boehm

1400 Wilson Boulevard

Arlington, Virginia 22209-2308

Defense Advanced Research Projects Agency (DARPA)
Director, Naval Technology Office

1400 Wilson Boulevard

Arlington, Virginia 22209-2308

Defense Advanced Research Projects Agericy (DARPA)
Director, Prototype Projects Office

1400 Wilson Boulevard

Arlington, Virginia 22209-2308

Defense Advanced Research Projects Agency (DARPA)
Director, Tactical Technology Office

1400 Wilson Boulevard

Arlington, Virginia 22209-2308

Chief of Naval Operations
Attn: Dr. R. M. Caroll (OP-01B2)
Washington, D.C. 20350

Chief of Naval Operations
Attn: Dr. Barl Chavis (OP-162)
Washington, D.C. 20350

Naval Surface Warfare Center
Code K54

Attn: Dr. William McCoy
Dahlgren, Virginia 22448

Naval Surface Warfare Center

Code U33

Atn: Phil Hwang

Silver Spring, Maryland 20903-5000

Professor Lugqi

Code 52Lq

Naval Postgraduate School
Computer Science Department
Menterey, California 93943-5100

349

